
Chapter 2
Data analysis software and graphs: Excel and R

James Myers
2022/2/10 draft

1. Introduction

 Ah, you young people today. When you think about doing statistics, you probably think
about turning on a computer program, pushing some buttons, and the right answer magically
pops out. But statistics is math, and math isn’t the same as computation. In fact, when personal
computers were first introduced, mathematicians were among the last to adopt them, and even
today, some hold it as a badge of honor that they develop and test their mathematical ideas
using only their own personal brains. Statistics, as a field, is a couple hundred years old
(depending on when you start counting), and so a lot of the statistical concepts and methods
that we’ll discuss in this book were invented long before computers even existed: probability
theory, the bell curve, t tests, ANOVA, chi-square tests, and even that latest hot topic of
Bayesian statistics.
 Just as with those mathematicians, your brain is still far better at thinking logically about
math, including statistics, than even the most expensive computers today. So doing statistics is
not a matter of sitting back and letting your computer do all the work for you. Instead, the
computer is merely a tool for doing the most boring and repetitive work, so that you, the
superior human being, get to enjoy the fun parts: thinking about how to give your data the
proper respect, and how to interpret the results in theoretically interesting or practically useful
terms.
 The computer can also provide its own kind of fun, though. As a famous statistician says
(Gelman, 2013): “There’s so much that goes on with data that is about computing, not
statistics.... Statistics can do all sorts of things. I love statistics! But it’s not the most important
part of data science, or even close.”
 This chapter introduces the two computer tools that we’ll use through the rest of this book:
Microsoft Excel (https://products.office.com/excel) and R (https://cran.r-project.org/). I first
explain why I chose these particular programs, introduce each by applying them to the same
linguistic problem (basic corpus analysis), show how to do some slightly fancier stuff in each
program, and then give an overview about how each program makes basic graphs.
 By the way, I hate to say this, but don’t just sit there! When you’re reading this chapter
(and the rest of this book, in fact), you really have to try out everything that I demonstrate, by
yourself. Learning statistics is more like learning to cook than learning history: it’s something
that you have to actively do.

https://products.office.com/excel
https://cran.r-project.org/

Ch. 2: Data analysis software: Excel and R

2

2. Excel and R

 Why am I making you learn Excel and R? First, these two programs complement each
other: Excel is much easier to use for many basic functions, but R is much more powerful. This
complementarity is natural: as Spiderman says, with great power comes great responsibility,
so the power of R is precisely what makes it harder to use. That’s one reason why I still often
use Excel, and I suspect that most people who go on and on about how wonderful R is actually
use Excel quite a bit too, but are too ashamed to admit it. Excel is also widely used in the “real
world”, so learning it just might help you get a job. Meanwhile, the popularity of R can be seen
everywhere: not only are most of those statistics-for-linguists textbooks (see chapter 1) based
on R, but professional statisticians (like Gelman) also tend to prefer it over other statistics
software. Among other things, this means that the internet has a lot of information on how to
use R.
 Second, Excel and R are both free. Well, R is totally free, in both senses of the English
word “free”: it costs nothing, and it is “open”, that is, not locked up in any way. In other words,
you can download it without registering, and if you’re a computer expert, you can look at its
own internal programming and copy or edit any part of it that you like. The freeness of R is
reflected in its weird name, in fact. As you may or may not know, the most widely used
computer language in the world is C (used to program everything from video games to Excel
itself), so in 1976, when Bell Laboratories (the inventors of C) wanted to create a new language
just for statistics, they called it S (for “statistics”). S is not free (not open and not cheap), so in
1997, when poorer researchers wanted to create an open free version, they called it R, because
R is the letter before S in the alphabet, and the R program is almost like the S program. R is
now maintained and updated by a bunch of people called the R Core Team, as part of the R
Foundation for Statistical Computing, based in Vienna, Austria. That’s why citations for R
look like this: R Core Team (2018) (see reference list for details).
 As for Excel, technically it’s not free, in either sense: you have to buy it, and you can’t
look at its internal programming or change it. But if your computer has a Windows operating
system, you already have it as part of the Microsoft Office system. And if you don’t want to
buy Excel at all, there are a number of truly free alternatives, including OpenOffice
(https://www.openoffice.org/), which contains the Excel-like program Calc. In this book I’ll
assume you have some version of the “real” Excel, but since everybody has slightly different
versions, you’ll have to adjust my examples to fit your own computer anyway.
 Software freeness is not a trivial matter. Linguists tend not to be very rich, and linguistics
students are even poorer. So don’t be mislead by people talking about IBM’s SPSS program
(www.ibm.com/software/analytics/spss/). While SPSS continues to dominate the statistics
software market, this is mainly because it is popular in the business world (the “B” in “IBM”
stands for “business”), and in business, people tend to have a lot of money to burn. Since you

https://www.openoffice.org/

Ch. 2: Data analysis software: Excel and R

3

don’t have to buy SPSS for this book, you can use your savings to buy a round-trip ticket
between Taiwan and the US, and still have enough money left over to buy a brand-new high-
end laptop. I’m not kidding: SPSS is extremely expensive. So if I were to teach you how to use
SPSS, basically the only ways you could continue to apply your knowledge after you graduate
would be to get a job in a rich institution that already has SPSS, or pirate it (or visit
https://www.gnu.org/software/pspp/ to download the amusingly named free imitation PSPP,
though even after almost twenty years of development it has not yet reached version 1). By
contrast, if you learn Excel and R, you can continue to use them for the rest of your life.
(Interestingly, the internet is filled with information for SPSS users wanting to learn R, but
nothing in the other direction. This book just saves you that useless first step.)
 Third, both Excel and R are logical, again in complementary ways. Excel makes more
sense visually (e.g., when taking a bird’s-eye view of your data, or making a quick graph to
see what’s going on), while R is a full-fledged computer programming language that lets you
do anything your brilliant little brain can think of. So Excel has a user-friendly (well, sort of
user-friendly) graphical user interface (GUI), with menus that let you choose from the small
number of choices that Microsoft gives you, while R uses line-by-line commands to create all
sorts of new functions. While you aren’t used to a command-line computer program (yet), at
least R’s language looks and feels quite similar to lots of other widely used computer languages;
learning R helps train you in programming, which can’t be bad for your job prospects either.
By contrast, like Excel, SPSS uses a menu-based GUI that limits what you can do, so if you
want to do something even slightly unusual, you have to use a special SPSS language that looks
totally different from a “real” computer language. Excel allows for command-line
programming too, using something called macros [巨集], but we won’t use macros in this
book, since most Excel users don’t use them either.
 Moreover, precisely because R is free and open, many outside programmers have creating
tools for improving its ease of use. For example, if you want R to look more like Excel or SPSS,
you can install the free menu-based Rcommander tool (Fox, 2005;
https://socialsciences.mcmaster.ca/jfox/Misc/Rcmdr/). If you want R to look more like
Mathwork’s Matlab (http://www.mathworks.com/products/matlab/), another expensive
program that’s particularly popular with neuroscientists, you can install the free RStudio
program (https://www.rstudio.com/), which is not a part of R, but rather a platform that runs R,
offering you various types of extra menus and windows. You can even use Rcommander and
RStudio at the same time. We won’t use either of these tools in this book (partly because I want
to focus on “pure” R, and partly because I don’t use them much myself), but feel free to try
them yourself, if you think they’ll help you to learn and use R better (while still saving money
for your trip and new laptop).
 No matter what computer tools you use for doing statistics, remember that you remain
smarter than them. Software is intended to make life easier, but long experience has taught me

https://www.gnu.org/software/pspp/
https://socialsciences.mcmaster.ca/jfox/Misc/Rcmdr/
http://www.mathworks.com/products/matlab/
https://www.rstudio.com/

Ch. 2: Data analysis software: Excel and R

4

that the first rule when using software is: Be patient! Computers can be frustrating because
they are too complex to fit into the human mental module for “tools”, but too stupid to fit into
the module for “people” either. So it’s normal to want to smash them on occasion (don’t really
do it, though).

3. Computing word frequency using Excel and R

 If linguists have a favorite poem, it’s probably “Jabberwocky”, which appears in Lewis
Carroll’s classic 1871 children’s book Through the Looking-Glass (愛麗絲鏡中奇遇; the
sequel to Alice in Wonderland 愛麗絲夢遊仙境). “Jabberwocky” starts like this:

‘Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.

 As you can see, the poem is filled with fake words! Carroll loved these kinds of word
games, and it’s not surprising that linguists love them too: “Jabberwocky” is discussed in
textbooks like Fromkin et al. (2018), and the great Chinese linguist Chao Yuan Ren (趙元任)
even “translated” it into Chinese (with the help of some fake characters; Chao, 1969).
 So here’s the question: What is the most common “word” in this poem? Is it one of those
fake words, or is it a real word? If it’s a real word, is it a content word (like a noun or verb) or
a function word (like an article or conjunction)?
 The whole text of the poem is freely available on the Internet (e.g.,
https://en.wikipedia.org/wiki/Jabberwocky), so I created a file containing all of its words, in
order, without spaces or punctuation, and called it Jabberwocky_OnlyWords.txt. Like all the
files we’ll work with through this book, this is supposed to be available from the statistics
resources page at http://personal.ccu.edu.tw/~lngmyers/statsresources.html), though I’m not
sure how stable my homepage will remain, so I’ll also put it into the E-Course folder for this
class. Note that the “.txt” part, which tells the world (and your computer) that this is a text file,
may be invisible to you, since by default Windows (and maybe Macs?) hides this so-called
filename extension [副檔名]. Search the internet for how to learn how to make it visible
(though this isn’t crucial, since R can still see it).
 If you open this file in a text editor, you’ll see this:

jabberwocky
twas
brillig

https://en.wikipedia.org/wiki/Jabberwocky
http://personal.ccu.edu.tw/%7Elngmyers/statsresources.html

Ch. 2: Data analysis software: Excel and R

5

and
the
slithy
toves
...

3.1 Computing word frequency in Excel

 Let’s first try doing this in Excel, after we learn some basic Excel operations.

3.1.1 Excel basics

 You can open up Jabberwocky_OnlyWords.txt in your browser and copy/paste it from
there into Excel, or you can save the file and open it within Excel (sometimes these two
processes work differently, but not in this case).
 (Hello...? Did you actually open up Excel and put that file in there? Do it! Stop reading
this for a minute and go do it now!)
 Excel is what is called a spreadsheet program, which puts data in a big grid with lots of
cells arranged in rows and columns. Notice that in Excel’s spreadsheet, there is a row of letters
at the top and a column of numbers on the left: Excel refers to cells or groups of cells by these
letters and numbers. So the cell in the upper left corner is A1, the horizontal row of the first 5
cells is A1:E1, the vertical column of the first six cells is A1:A6, the whole A column is A:A,
the two-row by three-column rectangle in the upper left corner is A1:C2, and so on. Normally
you don’t have to type these identification codes; they magically appear whenever you select
a cell or a set of cells (called a range).
 Let’s say you copy/pasted or opened Jabberwocky_OnlyWords.txt so that it appears in
column A; specifically, the first word “jabberwocky” is in cell A1 and the last word “outgrabe”
is in cell A167. What we have here is a list of word tokens, ordered as in the original poem,
but to count token frequency for every word type, the conceptually simplest way is to group
tokens of the same word type together. To do this we just sort column A in alphabetical order
(I got rid of capitalization so that it doesn’t affect the grouping; Excel’s sorting function ignores
capitalization, which can be annoying for linguistic research). So we select column A by
clicking the “A” on top, then look around the menu for a button that looks kind of like A→Z
(its precise location and appearance depends on which version of Excel you have). Note that
Excel also allows you to sort multiple columns together, putting all rows into the order
determined by just one of the columns, or even sorting by one column first, and then sorting
the “ties” by another column.
 Here we only have one column (column A), so sorting it makes the top look like this:

Ch. 2: Data analysis software: Excel and R

6

all
all
and
and

 We could count these by hand, but the whole point of Excel is to make it do all of the
boring work: don’t work hard, work smart! Excel is not just a grid of cells; each of those cells
can do calculations. If you type something starting with = into a cell, then Excel assumes you
are using a function [函數], operating on arguments [參數], which can be something you type
in, or the values of other cells in your spreadsheet. The syntax is always the same:
=FUNCTION(ARGUMENTS).
 Excel has many kinds of cell functions. If you forget something about a function, or want
to find out what other functions there are, just click on the fx symbol next to the function bar,
above the spreadsheet part of the window, and of course, you can also search for help on the
internet. But in the meantime, here are some of the most important types.
 Math functions include self-explanatory ones like =COUNT(), =SUM(), and =MIN()
(e.g., =MIN(5,3,7) gives you 3) and there are also functions whose arguments are character
strings (字串), that is, a bit of text within quotation marks (e.g., =LEN("five") gives you 4,
since there are four letters in “five”). Math functions ignore character strings, so if you hit
return after typing what’s in the highlighted cell below, the value of that cell will become 4
(similarly, =COUNT(B1:D1) gives 2 and =MIN(B1:D1) gives 1). You could also just type
the =SUM(part, then select cells B1, C1, D1, and Excel will automatically enter B1:D1 into
your function; in this case, Excel will even add the) symbol for you when you hit the enter
key, though you can’t count on it doing this correctly in all cases.

 A B C D
1 =SUM(B1:D1) 1 banana 3

 You can also compute sums with + (if you have some specific set of numbers to add,
rather than summing up a whole row or column). Similarly, the symbols for subtraction,
division, multiplication, and exponentiation (冪) are -, /, *, ̂ respectively (e.g., 3×42 is written
3*4^2, read in English as “three times four to the second power” or “three times four
squared”). (R uses exactly the same symbols, as we’ll see.) There are also fancier
mathematical functions like =SQRT() for computing square roots (平方根), and of course
statistical functions like =RAND() for generating random numbers and =AVERAGE() for
computing averages.
 Note that if a number is too large or too small to display in the normal way, both Excel
and R use scientific notation (科學記數法), where 1E+01 is 10 and 1E-01 is 0.1 (“E” for
exponentiation). For example, in Excel the command =7777777*7777777 will give the result

Ch. 2: Data analysis software: Excel and R

7

6.04938E+13, which means 6.04938 × 1013 = 60,493,800,000,000 (obviously rounding a bit
from the real answer). Similarly, =1/7777777 gives 1.28571E-07, which means 1.28571× 10-7
= 1.28571/107 = 0.000000128571. So if you see something like 8.98E-20 (and we often will,
when we get to p values), just remember that it’s basically equal to zero.
 Excel also has character functions like =CONCATENATE(), which pastes strings
together (i.e., concatenates them: 連接). In both Excel and R, strings have quotations marks
around them (either " or ', as long as you use the same symbol on both ends, which is useful,
since if you want to quote a quotation mark, just use the other kind, e.g. '"' for ‘ “ ’). Just as
you can use + for sums, you can concatenate strings with & (=CONCATENATE("book",
"store") and ="book" & "store" give the same result). Other useful character functions
include these: =LEN("cat"), =LEFT("cat",1), =RIGHT("cat",1), =MID("cat",2,3), (try
them!). By the way, if your version of Excel (or R) is “native” to your operating system, the
character functions should work just fine for whatever your native orthography is. For example,
=RIGHT("大象",1) will yield 象.
 Finally, Excel has logic functions like =IF(X,Y,Z), which means “if X is true, then Y,
otherwise Z”. For example, if you type =IF(3=3,"yes","no") into a cell, it will change the
cell’s appearance to “yes”. Similarly, if you type =IF(3<>3,"yes",SQRT(2)) (where <> means
“not equal to”), it will display the square root of 2. (The symbols in R for “equal to” and “not
equal to” are different from Excel’s, as we’ll see; this difference can be confusing, so get ready.)
Excel also has combination functions like =COUNTIF(), which counts how many instances
of particular thing there are; for example, if the range A1:D1 has the four strings “cat”, “dog”,
“pig”, “cat”, then =COUNTIF(A1:D1, "cat") will give you 2.
 For even more complicated operations (which is the usual situation in real data analyses),
you can also put functions inside other functions. For example, what value does the following
cell function give you, and why? Try it: but be careful that the parentheses match up correctly!
Excel shows you how the parentheses are matching up as you type (the ordinary version of R
does not give you this kind of help, but RStudio’s version does).

=IF(AND((100/2=50),(LEFT("cat",1)="c")), "both true", "at least one is false")

 The power of Excel cell functions doesn’t end there. If you copy and paste a cell with a
function to a new location, Excel will magically redo the calculations based on the function’s
new location! For example, if cell B3 contains the function =A2 (copying the value from the
cell that’s one row up and one column to the left), then if you copy/paste this to cell AD472,
its function will now say =AC471 (still referring to the cell that’s one row up and one column
to the left, relative to itself).
 Sometimes you want this context-dependent change to happen only relative to the rows
or only relative to the columns; in that case, Excel gives you a way to “freeze” cell references
to make them absolute, instead of contextual. For example, say you have two lists of words

Ch. 2: Data analysis software: Excel and R

8

and you want to know how many matches they have. One way to do this would be first to
arrange one list in a horizontal row and the other in a vertical column, as shown below:

 A B C D
1 cat dog fish
2 cat
3 dog
4 monkey

 Then you can type in a logic function in just one of the cells, say B2, as shown below.
This function checks if the word in cell B1 (“cat”) is identical to the word in cell A2 (“cat”),
but notice the “$” symbol: this “freezes” the cell reference (row or column) after it so that even
when we copy/paste or drag the cell (by pulling it from its lower right corner) across the
spreadsheet, it will still refer to row 1 ($1), where the horizontal list is, and to column A ($A),
where the vertical list is. Thus the rest of the cells will automatically get updated like so:

 A B C D
1 cat dog fish
2 cat =if(B$1=$A2,1,0) =if(C$1=$A2,1,0) =if(D$1=$A2,1,0)
3 dog =if(B$1=$A3,1,0) =if(C$1=$A3,1,0) =if(D$1=$A3,1,0)
4 monkey =if(B$1=$A4,1,0) =if(C$1=$A4,1,0) =if(D$1=$A4,1,0)

 This will generate the following cell values. Now you can use =SUM(A1:D4) to count
the matches (2).

 A B C D
1 cat dog fish
2 cat 1 0 0
3 dog 0 1 0
4 monkey 0 0 0

 An Excel cell consists both of the output value (shown in the cell itself) and the function
that it’s computing (shown in the function bar at the top when you select the cell). What if you
only want the output value of a cell, not the hidden function creating this value (e.g., you want
to keep a permanent record of the grades that you’ve been computing all semester)? In that
case, copy the cell, and before you paste it again, right click and choose Paste Special (S), then
click Value (V), thereby “freezing” the output value.

Ch. 2: Data analysis software: Excel and R

9

3.1.2 “Jabberwocky” in Excel

 OK, enough background. How can we take our alphabetized list of “Jabberwocky” word
tokens and compute the token frequencies? Here’s one way that works. It’s not the most elegant
way, as we’ll see later, but this way lets me teach you more stuff about Excel.
 First, slide the alphabetized list down one cell in column A, so it now starts in cell A2. In
cell B2 (the second cell of column B), enter a function that compares the current word with the
previous one: if the current word is different, it must be the first token of this word, so it gets
a token count of 1, and otherwise it adds 1 to the previous token count (B1). Then in column
C we mark the last token of a word (i.e., where the following word is different from the current
one) with *. The B column cell next to * will thus contain the token frequency for that word.
Note that the function in column C will either output the string "*" or the empty string "" (a
blank cell). So your cell functions will be as shown below.

 A B C
1
2 all =IF(A2<>A1,1,B1+1) =IF(A2<>A3,"*","")
3 all
4 and
5 and

 When you’re done copying these functions to all the cells in columns B and C, you turn
off the functions by copying and pasting “values only”, and then put the rows into order by
column C, which will put all the blank cells at the top, so you can easily delete those rows
(when you delete them, they disappear from the spreadsheet and all the other rows move up).
Now you’ll end up with a list of word types in column A, with each word’s frequency in column
B. To find out which word(s) have the highest frequency, just sort again by column B, from
largest to smallest.
 When I did this, the top six rows of my Excel spreadsheet look like this:

 A B C
1 the 19 *
2 and 14 *
3 he 7 *
4 in 6 *
5 jabberwock 3 *
6 my 3 *

 I promised you a more elegant way to do this, and here it is. Going back to the original
poem starting in cell A1, type =COUNTIF(A:A,A1) into cell B1 (or select its arguments by
clicking the relevant range and cell), and drag this down column B to the end of the poem. That

Ch. 2: Data analysis software: Excel and R

10

will give you a token count for each word. To make the final lexical list above, you’ll still have
to remove the repeats, but Excel has a built-in tool for that: go to the Data [資料] ribbon, look
for the Data Tools [資料工具], and click the Remove Duplicates [移除重複] button. The
lesson is: to do things more efficiently in Excel, you need to know more Excel tools and cell
functions. And the lesson to that lesson is: learn how to search for more information about
Excel on the internet.
 In any case, this little exercise shows that, unsurprisingly, the most frequent words in
“Jabberwocky” are real function words. Still, one fake word makes the top-five list too: the
Jabberwock, the monster at the center of the poem.

3.2 Computing word frequency in R

 Now let’s do this all over again, this time using R. Of course, we need to learn some R
basics first.

3.2.1 R basics

 To get your own free copy of R (by itself, not via RStudio, which I won’t discuss in this
book), search the web for “R cran” (CRAN = Comprehensive R Archive Network), which
should bring you to https://cran.r-project.org/, and find your computer type (Windows,
Macintosh, Linux). For Windows, you want to start with the base link (basic R stuff), which
brings you to a page with a link to the most updated version (while I’m typing this, it’s R-4.1.2-
win.exe). For Macs, you need to choose the version that suits your specific operating system
(while I’m typing this, they currently offer R-4.1.2.pkg for macOS 10.13 [High Sierra] and R-
4.1.2-arm64.pkg for macOS 11 [Big Sur]) - whatever that means, I don’t have a Mac. In fact,
if you Mac users have questions about R as you go through this book you’ll have to do some
internet searches for help. A good place to start is R’s official Mac FAQ [frequently asked
questions] page: https://cran.r-project.org/bin/macosx/RMacOSX-FAQ.html). Of course
there’s also one for Windows: https://cran.r-project.org/bin/windows/base/rw-FAQ.html.
There’s also a general R FAQ: https://cran.r-project.org/doc/FAQ/R-FAQ.html. But searching
the internet will bring up lots and lots of other helpful websites hosted by other organizations
and even private citizens.
 In any case, when you install R, by default it will be “nativized” to the language of your
computer’s operating system, though of course this only affects the menus and some basic
warning messages, not the R language itself, which is based on English. If you want everything
to be in English (like me!), then unclick the “Message translations” box during set-up, or at
least that’s how it works in Windows; as I said, I don’t have a Mac. However, I do happen to
know that the Mac menus look a bit different from those in the Windows version; for example,

https://cran.r-project.org/
https://cran.r-project.org/bin/macosx/RMacOSX-FAQ.html
https://cran.r-project.org/bin/windows/base/rw-FAQ.html
https://cran.r-project.org/doc/FAQ/R-FAQ.html

Ch. 2: Data analysis software: Excel and R

11

in order to change the working directory, i.e., the folder where R looks for data files and saves
your results files, in the Windows version of R you by using the “File” menu, but in the Mac
version you use the “Misc” menu.
 (Um.... You actually did this, right? You actually downloaded R and set it up, right? Just
reading this chapter passively isn’t going to do you any good! OK, enough nagging.)
 If all went well, when you run R you’ll get one big window with a few menu items on top,
and in the body of the window you’ll see some blue words and then the prompt symbol > in
red (though you can actually change these colors, and the background color, to anything you
want; in the Windows version, look in the Edit menu for GUI preferences..., and for Macs,
there’s an Application menu with Preferences under it).
 What you’re looking at is just an interface to R, not R itself; in fact, as just noted, the
Windows and Mac interfaces aren’t even the same, and RStudio uses yet another type of
interface. R itself is a computer language, and whichever GUI you uses is just where you enter
commands and get results. So using R doesn’t feel the same as using Excel or most of the other
programs that you may be used to. For example, while the R GUI has menus, they’re just for
changing the file folder (directory), changing the appearance of the window, installing extra
packages (tools with special functions), and other basic stuff like that, not for actually running
analyses. To do an analysis, you have to write a little computer program (a script if it’s very
little, or more generally, code). While this gives you great power and flexibility, it means you
have to memorize (or look up) the proper command words and syntax. Fortunately, the R
computer language is pretty simple compared to some other computer languages: similar to
Excel’s cell functions, the syntax is almost always function(argument) (without = at the front).
If you forget what an R function does, you can look R’s built-in help files by typing ? before
the function name. The help files will show you what the function’s syntax is supposed to be,
and what values the function generates. However, because R was written for free by statistics
nerds, these help files are not always very helpful. I often prefer just to search for help on the
internet, where usually you can find somebody who has asked exactly the same question, along
with a pretty clear answer (mostly in English, but R is used by lots of Chinese speakers too).
 In addition to giving you complete freedom to do any kind of analysis you want, the R
language also encourages you to play actively with your data, instead of just sticking it into a
black box and passively waiting for the results, as you do with most statistics programs
(including Excel and SPSS). Every time you enter a new command into R, you can do a new
thing to your data, including reorganizing it, changing it (e.g., dropping bad data, as we’ll
explain in later chapters), making a graph, making a different graph, trying one analysis, trying
a different analysis, and so on. This is how real statisticians work.
 If you’re typing R code directly into R’s window, one useful tip to know is that you can
reenter commands by pressing the up-arrow and down-arrow keys, which scrolls through all
the commands you’ve entered since you started running R. But I usually don’t type my

Ch. 2: Data analysis software: Excel and R

12

commands directly into R, but instead type them in a text editor first, saving my work as I go
along (as a .txt file). Don’t use Word to write your code, since unless you change your settings
it will automatically “fix” your spelling and even change your quotation marks (R functions
recognize " but not “). As a Windows user, I sometimes use the built-in Notepad [記事本]
program (like Mac’s built-in TextEdit [文字編輯]), but for Windows even better is the free
non-Microsoft program Notepad++ (https://notepad-plus-plus.org/), which has some extra
features to the programming life a bit easier. For example, it fills in brackets for you, so if you
type (, [, or {, it will automatically add),], or }, respectively, and as in Excel, if you click on
one of them later, the other one will be highlighted in the same color; otherwise, if you have a
lot of brackets, it can get quite confusing about which bracket goes with which. Notepad++
also lets you change the default colors and font size to something easier on the eyes, and it can
supposedly even help you remember R commands if you turn on auto-completion (https://npp-
user-manual.org/docs/auto-completion/), though I’ve never tried that feature. For the Mac,
fancy text editors similar to Notepad++ include Brackets (http://brackets.io/), Textmate
(https://macromates.com/), and Sublime Text (https://www.sublimetext.com/; this also works
in Windows).
 When I’m ready to run a script, or part of a script, I usually just copy/paste it into the R
window. You can also load an entire R script file with the function source(filename), where
filename is a string naming the script file, but I tend not to do it that way, since it doesn’t show
you the script actually working, making it harder to find programming errors. If you use
RStudio, it will help with all of these things too (complete brackets, run code, etc), plus
instantly update your graphs when you change the code that creates them.
 When you save your R script on your computer, you can continue working on your data
the next day (or next year), or share it with colleagues (more and more academic journals
encourage authors to post their R code along with their paper, so readers can check the analyses
for themselves). You can even apply your analysis to a totally different data set, or edit it for a
new but similar situation (very useful if it took you a long time to figure out the original
analysis). All of this is basically impossible to do with Excel (as you can already see in this
chapter, it’s a lot harder for me to explain how to do stuff in Excel than in R, where I can just
give you code to copy/paste). Many times I’ve labored for hours working through some Excel-
based procedure, rearranging and deleting things as I go along, and then when I want to redo
the whole process later on, I have no clear memory how I did it, or don’t even know if I made
any mistakes along the way. By contrast, to redo an R analysis, I just have to search my
computer for my old R script and edit it a bit to fit my new situation (later I’ll explain an even
fancier to save and share R code).
 Now that I’ve sold you on how wonderful R is, let’s actually start using it.
 Even though R may look weird to you at first, to understand its “soul”, you basically only
have to remember two principles. First, R is an object-oriented language. That means that

https://notepad-plus-plus.org/
https://npp-user-manual.org/docs/auto-completion/
https://npp-user-manual.org/docs/auto-completion/
http://brackets.io/
https://macromates.com/
https://www.sublimetext.com/

Ch. 2: Data analysis software: Excel and R

13

whenever you run a command, you are actually creating a “thing”, not merely doing an action;
you can then name this object and do other stuff with it, like look inside it to see what properties
it has (we’ll see lots of examples of this shortly). This is different from Excel, where the cell
functions just change the value of the cell, but don’t create an object.
 Second, because R is designed for statistics, which is all about analyzing data sets, the
most common type of R object is a vector (向量), an ordered sequence of elements that are all
of the same type (e.g., all numbers, or all character strings). It’s called a vector because when
the sequence consists of numbers, you can think of it as an arrow with a certain direction and
length (e.g., the vector (1,2) could represent an arrow starting at the center point in a 2D plane
and ending at the point (1,2), i.e., where x = 1 and y = 2).
 Sorry for the weird name; basically, a vector is just a sequence of numbers or strings.
Because a vector is an object in R, you can look at its properties, including each of its elements
and its total length. For example, if you have a vector named banana (why not? you can name
your R objects whatever you like) that has 253 elements (why not? R permits super-long
vectors, limited only by your computer’s memory), then the 179th element can be referred to
with banana[179]. The thing inside the [] is called the index (plural: indices), since it helps R
“look up” the referred-to element, like an index at the back of a book.
 You have to confront both of these two principles as soon as you write even the simplest
R command. For example, say you want to add 2 and 3, using the following command. (In all
of the R examples in this book, the bold part represents the red part you type after R’s red >
prompt, and the non-bold part represents the response that R gives you in blue. So feel free to
just copy/paste the bold part from this e-file to your R window.)

2+3
[1] 5

 The answer is 5 (of course), but what does R mean by that [1]? R treats 5 as a vector with
just one element in it, and the location of the first element in this one-element vector is
represented by the index [1]. In essence, our command asked R to compute something and
create an unnamed one-element vector object, which it then displays for us, because all we did
was “describe” the object with our command.
 Now let’s put the output of our command into a new object (I’ll often use the word
variable to describe one-value objects that can change their contents, like the answer to a math
problem). Again, we can call it anything we want, so let’s call it x:

x = 2+3

 This time R doesn’t give a response, but when we type x, R responds just as if we had
typed 2+3 directly:

Ch. 2: Data analysis software: Excel and R

14

x
[1] 5

 By the way, in this book I prefer to use = to create and name objects, including variables,
but many R authors prefer to use the arrow-like symbol <- instead: x <- y means “put the value
of the object y into the object x”. One advantage of <- is that it makes it clear that we are not
talking about “equal to” here. For example, for beginning programmers, the command below
looks like a logical impossibility, but actually it’s a command that takes the value of x, adds 1
to it, and then updates x with this new value:

x = x+1
x
[1] 6

 The arrow notation also lets you assign variables “backwards” if you want (I don’t see the
point of this at all, but whatever):

3 -> y
y
[1] 3

 One difference from Excel is that R does care about the difference between uppercase and
lowercase letters; SUM() is not a function in R, but sum() is. You can use it just as you would
in Excel:

sum(3,1,4,1,5)
[1] 14

 But sum() is actually an unusual R function in this way, because R normally wants to
know exactly how many arguments it’s dealing with. Since we can sum any number of numbers,
R would prefer for us to put all the numbers into one object, namely a vector. The most general
way to create a vector to use the c() function (“c” for “combine”), which lets you combine
anything of the same type (e.g., all numbers or all strings):

c(3,1,4,1,5)
[1] 3 1 4 1 5

 That [1] refers just to the first number in the vector (3), not the whole thing. You can see
that’s what’s going on if you make R’s window super-narrow, so the text has to wrap around:

Ch. 2: Data analysis software: Excel and R

15

c(3,1,4,1,5)
[1] 3 1 4 1
[5] 5

 I could have explained this to you directly in the command itself, as in the command line
below. Anything written after the # symbol is treated as a comment and ignored by R (for
human eyes only). Commenting is very useful if you need to explain your code to somebody
else, or to help you understand your own code when you look at it later.

c(3,1,4,1,5) # The [1] in the answer refers to the first element, not the whole vector

 R also gives you lots of other ways to create special types of vectors (as explained in the
comments):

a = c(9,6,4,8,3,2,0) # Creates the vector a with these values in this order
b = rep(1,5) # Uses repetition to create the vector b = (1,1,1,1,1)
c = 3:7 # Creates c = (3,4,5,6,7)
d = rep(6:9,2) # Creates d = (6,7,8,9,6,7,8,9)
e = seq(1, 5, by=2) # Uses a sequence to create the vector e = (1, 3, 5)
f = c(a,b,c,d,e) # Creates f = (9,6,4,8,3,2,0,1,1,1,1,1,3,4,5,6,7,6,7,8,9,6,7,8,9,1,3,5)

 So if you want to use the sum() function in the usual R way, it would be better to put our
numbers in a vector, for example using c(), and then put this vector inside sum():

sum(c(3,1,4,1,5))
[1] 14

 To see why it’s important to use R functions in the way they expect, consider the statistical
function mean(), which computes the same thing that Excel’s =AVERAGE() computes (see
next chapter for details). Here’s the right way to compute the average of our set of numbers
(compare the result with =AVERAGE(3,1,4,1,5) in Excel):

mean(c(3,1,4,1,5))
[1] 2.8

 Even though a few R commands can automatically convert a list of elements into a vector,
this is very rare: most cannot, including mean(). So if you forget to make the vector (using the
c() command) for mean(), R will just respond with the first number in your data set, because
it treats the first argument as a vector and just averages it all by itself, ignoring all the rest of
the numbers:

Ch. 2: Data analysis software: Excel and R

16

mean(3,1,4,1,5)
[1] 3

 This kind of mistake can be hard to detect (in fact, I just did it myself the other day!),
since R doesn’t give you a syntax error (we will see a few more examples over this book of
this annoying aspect of the programming life). And also be careful not to confuse [] (for vectors)
and () (for functions)! I did that myself the other day too (my excuse is that I had just edited
the code and didn’t notice that I needed to change this bit too), and while this time R gave me
an error message, it was totally baffling and useless:

mean[c(3,1,4,1,5)]
Error in mean[c(3, 1, 4, 1, 5)] :
 object of type ‘closure’ is not subsettable

 Wha...?? Apparently functions in R have the type called “closure”, and the [] tell R that
you’re trying to find a subset of it (i.e., just the elements indicated by the indices), which of
course makes no sense. But I wish R would just say “Don’t use [] with functions, dummy!” If
R ever gives you a baffling error, just copy/paste it into an internet search and you’ll find some
other dummy getting an explanation.
 In case you’re curious, you can see the type of an R object using the typeof() function
(“double” is old-timey computer terminology for “ordinary number”, so called because it uses
two memory portions to store the stuff before and after the decimal point [小數點]).

typeof(mean)
[1] "closure"

typeof(3)
[1] "double"

typeof("banana")
[1] "character"

 Fortunately you don’t have to worry a lot about object types, since unlike most computer
languages, R is very flexible, and will usually change the type for you (later I’ll warn you about
situations where it doesn’t). For example, you can easily turn a logical variable into a numerical
variable (FALSE = 0, TRUE = 1), just by applying arithmetic to it:

1*(3 == 1:5)
[1] 0 0 1 0 0

 Since we’ve introduced the character type, you should know that, like Excel, R also has
lots of functions for them. For example, to concatenate (remember, this means to paste strings

Ch. 2: Data analysis software: Excel and R

17

together), use paste(). The default (built-in) separator for paste() is a space (sep = " "), but if
I’m making a compound word and I don’t want a space, I can change it to sep = "" (the empty
string).

paste("book","store",sep="")
[1] "bookstore"

 How did I learn about the sep argument in paste()? I started by opening up R’s help file
(it opens a page in your Web browser, but it’s actually a file on your computer):

?paste

 In the Usage section of the help page, it says the general syntax is paste(..., sep = " ",
collapse = NULL), and in the Arguments section, it explains that ... represents “one or more
R objects, to be converted to character vectors”. That tells me that paste() is like sum(): one
of the rare R functions that lets me enter any number of arguments in the first position. The
Arguments section also explains that sep represents “a character string to separate the terms”,
and since the Usage section shows sep = " ", that means that the default character string is a
space. So from all this I deduced that to concatenate without a space, I need to change sep to
"". The final argument is collapse, with the default of NULL, but I don’t need to change the
default on that here. Basically, collapse acts like sep when we enter our strings as a vector,
which can be useful in complex scripts:

paste(c("book","store"),collapse="")
[1] "bookstore"

 R also has functions similar to, but sometimes crucially different from, Excel’s =MID()
and =LEN(). Try and see below. In particular, remember that to R, even a simple value is a
one-element vector, so for functions that do one thing to one string (or number),
function(vector) will do that same thing individually to each of the elements:

substring("cat",2,3) # Notice the logic is a bit different from Excel!
substring(c("cat","dog"),1,1) # Like most R functions, this can process vectors too
nchar("cat") # Like Excel's =LEN() function
nchar(c("one","two","three")) # Again, it can work across vectors

 Note that R’s length() function doesn’t act like Excel’s =LEN() function, but rather more
like Excel’s =COUNT() function:

length(c(9,6,5))
[1] 3

Ch. 2: Data analysis software: Excel and R

18

 To illustrate how R handles if-then logic, I first have to clarify a set of confusing symbols.
Remember that Excel cell commands all start with =, which basically makes the cell equal to
the output of the command; Excel uses this same symbol to represent “equal to” in logic
functions, while <> is used for “not equal to”. By contrast, as we saw above, R uses =, <-, or -
> to name or update the object created or modified by a command. R also uses the = symbol to
assign the values of function arguments (e.g. sep = "" in paste() above). For if-then logic,
however, “equal to” must be written as ==, while “not equal to” is !=.
 The basic syntax of R’s if() function is if(X) {Y} else {Z}, which means: if X is true, give
the value Y, otherwise give the value Z (without the optional else part, the function outputs
nothing if X is false):

x # Still 6, based on the commands we ran earlier
[1] 6

if (x != 6) {paste("orange")} else {paste("banana")}
[1] "banana"

if (x != 6) {paste("orange")} # Nothing happens

 A final note before we get into “Jabberwocky”: If it takes you more than one R session to
try out this chapter’s R code, you might want to save all the new objects you create along the
way, so you don’t have to start over again from the start of the chapter when you turn on R
again. For example, if you started with a fresh R session with this chapter, right now your R
workspace should have the following boring variables that we’ve just created, as you can see
with the ls() function:

ls()
[1] "a" "b" "c" "d" "e" "f" "x" "y"

 Every time you turn off R, it will ask “Save workspace image?” or the equivalent in
whatever language you used to set up R, which means to save a copy of the workspace with al
your objects in it. If you choose “Yes”, while exiting R it will also create two files in your
active directory: .RData (which is the workspace image file, with all your objects in it)
and .RHistory (which is the record of all the commands you ran in R during your session).
Now, when you start a new session, after changing the directory to your working folder
(remember, in Windows that’s “Change dir...” in the File menu), you can reload your old
workspace by choosing “Load Workspace...” in the File menu, and selecting .RData. Try it,
and check what ls() says!

Ch. 2: Data analysis software: Excel and R

19

3.2.2 “Jabberwocky” in R

 OK, now that we know some R basics, how do we put the Jabberwocky_OnlyWords.txt
file into R? Unlike Excel, pasting data into the R window won’t work (you just get a long list
of syntax errors, except where Carroll’s words coincidentally match existing R commands,
none of which we’ll use in this book). Since this file is on the web, it’s actually possible for R
to get it itself, since it knows how to access the web, but in real life, your data files will usually
be on your own computer, so I’ll normally assume you downloaded the file first, and saved it
in some directory (folder).
 The easiest way to tell R how to find the file on your computer is to use R’s menus to
change the working directory: click File, then Change dir..., and then find the folder where
you put Jabberwocky_OnlyWords.txt (note that R’s file menu system may start way at the “top”
of your computer’s file system, so you need to go through the “Users” and “Admin” levels
before you get down to the more normal folders). You can confirm that you’re in the right
directory by using the dir() function:

dir() # This doesn't require any argument

 In my case, I see “Jabberwocky_OnlyWords.txt” in there, so I know I’m in the right folder.
Note that there are quotation marks around the file name, since R treats it as a string, which is
useful if you want to write R functions that can find or change file names. If your folder has
lots of other stuff, each filename will appear next to [1], [2], and so on, since the object created
by dir() is actually a character vector, listing the names of all the files in the folder.
 Our file also contains a character vector (the poem). R has a variety of ways of opening
files and putting their contents into R’s workspace, depending on the file and data types and
what you want to do with them. Right now, R’s workspace only has x and y in it (the variables
we created while playing around above):

ls() # ls for"list"
[1] "x" "y"

 As with many “raw” corpora, our file is just a series of lines of text (in this case, just one
word each), so the simplest function to use to load it in is: readLines() (note the capital L).

readLines("Jabberwocky_OnlyWords.txt")

 But that doesn’t quite do what we want: readLines() created an object and just displayed
it, instead of storing it as a variable: ls() shows that the workspace doesn’t actually have it. To

Ch. 2: Data analysis software: Excel and R

20

add the poem to our workspace, we need to give the object a name. I’ll choose something easy
to remember and type:

jabberwocky = readLines("Jabberwocky_OnlyWords.txt")

 Now if we type jabberwocky, we’ll see whole the poem again. And since it’s an object
(specifically, a character vector), we can also look at just parts of it:

jabberwocky[1] # Just first word
head(jabberwocky) # First six words
tail(jabberwocky) # Last six words

 You might think that after all this, R is so much harder to use than Excel that it’s just not
worth the trouble. But here comes the magic. Since R is a statistics program, it has lots of built-
in functions designed to answer just the kinds of question we started with. In particular, if we
want to know what the token frequency is for each of the words in “Jabberwocky”, all we need
is a single function: table(). This creates a frequency table counting how often unique
elements appear in a vector. So all the steps we did in Excel, partly by hand, are compressed
into just one automatic process:

table(jabberwocky)

 To see just the top six most frequent words, parallel to what we did in Excel, we first
create the frequency table (using table()), then sort it from highest to lowest (using sort(...,
decreasing=TRUE)), then show the first six (using head()), all embedded in one command:

head(sort(table(jabberwocky),decreasing=TRUE))
jabberwocky

the and he in jabberwock my
19 14 7 6 3 3

 The results are not only exactly the same as what we got with Excel, but they were fully
automated. With the Excel method, we have to rely on our memory for what we did if we want
to explain it to somebody else or reuse it ourselves later, and there’s also a risk that we’ll
accidentally lose information halfway (e.g., when we delete the repeats in the sorted word list).
By contrast, with R, if we want to exactly the same thing to a new character vector, we can
simply save the following code in a text file, edit the filename as our new situation requires,
and rerun it:

wordlist = readLines("filename.txt") # This won't work unless you really have this file!
freqlist = sort(table(wordlist),decreasing=TRUE)

Ch. 2: Data analysis software: Excel and R

21

 If, for some reason, we wanted R to do this job in a more Excel-like step-by-step fashion,
R still makes it easier than Excel. For example, to extract just the unique elements from a vector
containing repeated elements (as we did laboriously in our first Excel analysis of
“Jabberwocky”), we can just use unique():

unique(c(3,1,4,1,5))
[1] 3 1 4 5

 However, it would be dishonest to pretend that Excel is not easier to use than R in general,
which is why I also include Excel in this book as much as possible. This easiness comes not
only from its GUI system, but also from its being better integrated into the specific type of
computer you are running. This latter point is especially important for linguists, who work with
many strange languages with strange writing systems (like Chinese!). In particular, base R (at
least for Windows) is not very good at handling Unicode, the “universal” system for computer
coding of written symbols. This means that R can mess up any symbols that aren’t in the very
small ASCII set (American Standard Code for Information Interchange, that is, basic digits,
punctuation, and letters without any diacritics), including the IPA and even letters that are
standard in non-English spelling systems (e.g., German “ü”). It can even mess up Chinese
characters, doing particularly badly with very low-frequency ones. Shortly I’ll explain various
ways of dealing with this stupid problem.

4. More tips and tricks

 In this section I want to mention a few other tips and tricks, unique to Excel or R. Of
course the rest of this book will be filled with many more, but we have to start somewhere.

4.1 More Excel tips and tricks

 The “Jabberwocky” poem is actually a kind of linguistic corpus, and we just did a kind
of corpus analysis: computing frequencies. We can also do another thing that corpus linguists
often do with corpora: we can tag the word tokens for special properties. In this case, let’s tag
this corpus to mark which words are real English words and which ones are fake. In real life,
linguists do this kind of thing all the time; for example, in studying child language, they
transcribe a child’s speech and then tag all the words for syntactic category (nouns, verbs, and
so on), so they can study the child’s syntactic structure. The “Jabberwocky” corpus only has
167 word tokens, so tagging wouldn’t be very hard to do by hand, but real corpora tend to be
thousands of times bigger. Is there any way Excel can make the job a little bit easier?
 I’m glad you asked. Instead of manually tagging all 167 word tokens, all we have to do
manually tag the 91 distinct word types (the ones we counted the token frequencies for). So

Ch. 2: Data analysis software: Excel and R

22

let’s say we did that, maybe with the help of Word’s spell-check tool to indicate the fake words
with wiggly red underlines. We record this information in the same Excel file where we pasted
in the full corpus (poem), but in a different sheet. Let’s call the sheet with the full corpus
Corpus (you can type the name into the little tag at the bottom of the sheet), and the sheet with
the lexicon Lexicon, with a column for the words, another column for the frequencies, and a
new column showing “real” or “fake” for each word. Since Lexicon has the word types in
column A, the frequencies in column B, and the (now useless) stars in column C, let’s type the
tags by hand into column D.
 How can we automatically add these real/fake tags to the corpus? The crucial function is
=VLOOKUP(), which lets you look up something in a table by searching vertically (“V”) row
by row. In our case, for each word token in Corpus, we want to look it up in the list of word
types in Lexicon, then find the associated real/fake tag, then put that information next to the
word token in Corpus. The basic syntax looks like this (the FALSE is to force an exact match;
if an approximate match is OK, use TRUE):

= VLOOKUP(cell-to-look-up, table, column-number-in-table, FALSE)

 Since the word tokens are listed in column A in the Corpus sheet, let’s put the tags in
column B. We start by typing =VLOOKUP(into the first B cell in Corpus, then for the cell to
look up, we click the first A cell in Corpus (which has “jabberwocky” in it), and for the table,
we change the sheet to Lexicon (which will automatically be marked in the function by the
appearance of Lexicon! before the cell or range, with an exclamation point), then select the
entire lexicon table, crucially including both column A (with the words to be looked up) and
column D (with the tags). Since column D is the fourth column from A, the column number is
4. Then we add that FALSE to look for exact matches, and end the function with the close
parentheses mark. Since we’re going to copy/paste or drag this function down all of column B
in the Corpus sheet, we need to fix the absolute location of the table in Lexicon with those $
marks, to fix both columns and rows. The result is that the function in cell B2 in sheet Corpus
will look like this:

= VLOOKUP(A1,Lexicon!A1:D91,4,FALSE))

 Assuming “twas” is a real word, we end up with a tagged corpus in the Corpus sheet that
starts like this:

Ch. 2: Data analysis software: Excel and R

23

 A B
1 jabberwocky fake
2 twas real
3 brillig fake
4 and real
5 the real

 By the way, we probably want to name our columns something more memorable than just
“A” and “B”. We could do this by shifting all the content down one row, then entering
something like “Text” and “Tags” into cells A1 and B1, respectively. We can even fix this row
so it doesn’t move as we scroll down, by selecting the whole row (click the “1” row label),
changing the menu to View, and then clicking that little icon with the shaded first row.

4.2 More R tips and tricks

 How did I convert the Wikipedia version of “Jabberwocky” into my character vector? If
I had done it the Microsoft way, I could have used Word: open the original poem in Word, do
a global replace to delete all punctuation and remove the extra line breaks between the poem’s
sections (stanzas), then convert everything to lowercase.
 But instead I did it in R, using the following script. I first show the code, then explain how
it works, using the commented line numbers for reference. The script assumes that you have
already downloaded Jabberwocky_Original.txt and R’s directory has been changed to the
folder containing it.

jabberwocky.orig = readLines("Jabberwocky_Original.txt") # (1)
jabberwocky.orig = subset(jabberwocky.orig, jabberwocky.orig != "") # (2)
punctuation = c("\"","'","\\.",",","—","\\?","!",";",":","-") # (3)
for (punc in punctuation) { # (4)
 jabberwocky.orig = gsub(punc,"",jabberwocky.orig) # (5)
} # (6)
jabberwocky.orig = tolower(unlist(strsplit(jabberwocky.orig," "))) # (7)
write(jabberwocky.orig,"Jabberwocky_OnlyWordsNew.txt") # (8)

 In line (1), I read in the poem line by line, using readLines() again, because again this
file is not a data table. I decided to give the original version a new name, jabberwocky.orig,
so I wouldn’t write over the jabberwocky object that I put in R’s workspace earlier in this
chapter. R doesn’t treat the “.” symbol as anything special inside object names; since R
distinguishes lower and uppercase, I could also have used JabberwockyOrig or something.
 In line (2), I removed the line breaks between poem stanzas (i.e., all empty strings in the
character vector jabberwocky.orig). We’ll see the subset() function a lot in this book, since
it’s very useful for playing around with real datasets.

Ch. 2: Data analysis software: Excel and R

24

 In line (3) I just list all the punctuation marks I noticed (with my own eyes) in
“Jabberwocky”, putting them into the character vector punctuation. Some of them have
special usages in R’s character functions, so to make them behave like normal characters, I had
to escape them with the \ or \\ symbols (don’t worry if this is confusing; we’ll never need to
do this again for the rest of the book, though it’s crucial for linguists who do a lot of computer
text analysis).
 Lines (4) through (6) represent a loop: the for() function looks at each element in the
character vector punctuation, names the element punc, does the operation within the { }
symbols on punc, and then outputs the results (unlike other computer languages, R loops
normally don’t output anything until the whole loop is finished). Notice that I indented line (5)
a bit to show that it’s inside the { } symbols.
 The operation in line (5) is basically like Word’s global replace: the gsub(X, Y, Z)
function (“global substitution”) changes every instance of X into Y within Z. Since X here is
punc and Y = "" (the empty string) and Z is jabberwocky.orig, the effect is to remove all of
the punctuation. (Note that if we didn’t escape the “.” symbol, gsub() would replace everything
with nothing, since in string search functions, “.” is a wildcard representing any character.)
 Line (7) does three things in sequence, starting with the most deeply embedded function.
The strsplit() function splits strings, in this case splitting all strings in the character vector
jabberwocky.orig at the spaces, in other words, separating each line into separate words.
(Excel can do something similar: select a column you want to split, then look around the menus
for an icon showing one column of boxes being split into multiple columns). Because each line
of the poem may have a different number of words, strsplit() does not create a vector (where
all elements have to be the same type), but rather a different kind of object called a list, which
is an ordered sequence of any type of object (in this case, each element is a different-length
vector of words). The function unlist() then flattens the list into an ordinary vector, where each
element is a word (character string). Finally, tolower() puts everything into lowercase.
 Line (8) then saves our work. Just as R has several different functions for importing files,
it also has several ways to export them. In this case, write() saves our character vector as a text
file. If you really ran this code, look in your directory: do you see the new file that was created?
 This little exercise highlights yet another difference between R and Excel: R can do loops.
Loops are the conceptually simplest way to make a computer do the same stupid thing over
and over again, so we don’t have to. For example, the following for() loop sums the numbers
from 1 to 5.

total = 0 # Initialize the variable that will contain the total sum
for (i in 1:5) {# Programmers like to use i as the index variable
 total = total + i # Again, note the indenting, to keep track of what's inside what
}
total
[1] 15

Ch. 2: Data analysis software: Excel and R

25

 Of course that’s a dumb example, since we could have done the same thing a lot more
easily with sum(1:5). But it’s not always obvious that a non-looping approach is possible. For
example, the following code creates a set of ten random values between 0 and 1, finds the
minimum, and replaces this value with 0. Run it to see what happens.

randvar = runif(10) # "Uniform" random distribution, like Excel's =RAND()
newvar = randvar
for (i in 1:10) {
 if (randvar[i] == min(randvar)) { # min() is just like Excel's =MIN() function
 newvar[i] = 0 # Replace just this element, if it's truly the minimum
 }
}
cbind(randvar,newvar) # Bind the vectors into columns for comparison

 But it turns out that it’s actually possible to do this without looping, in a kind of tricky
way; the results are the same as above:

newvar2 = randvar # So we don't lose the original newvar
newvar2[randvar==min(randvar)] = 0 # Tricky!
cbind(randvar,newvar,newvar2) # newvar = newvar2

 How does the tricky step work? Remember that the [] brackets mark the indices for vector
elements. You can refer to vector elements directly by number, as we did earlier when we
displayed the first word in jabberwocky just by typing jabberwocky[1]. We could also refer
to the first three words with jabberwocky[1:3], or the first three odd-numbered words with
jabberwocky[seq(1,5,2)]. But we can also refer to vector elements by using formal logic (i.e.,
the branch of math relating to truth, falsity, and operators like NOT, AND, and OR). That is,
vector[logical] refers to all of the elements in vector for which the logical part is true. Thus
the object newvar2[randvar==min(randvar)] refers to the element of the vector newvar such
that it is true that randvar==min(randvar); in plain English, it refers to randvar’s minimum
element. When we then assign this object to have the value 0 (using
newvar2[randvar==min(randvar)] = 0), the outcome is the same as the loop: the minimum
value is replaced by zero.
 The way R performs this magic is to treat the logical indices inside the [] as just another
kind of vector, namely a logical vector:

1==1
[1] TRUE

typeof(1==1)
[1] "logical"

Ch. 2: Data analysis software: Excel and R

26

 You can actually see the logical vector if you just type the logical part by itself: it’s a list
of TRUEs and FALSEs, showing when randvar is or is not equal to min(randvar) (the
location of your TRUE might be different from mine, depending on the results of runif()).

randvar==min(randvar)
[1] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

 By the way, note that the all-caps TRUEs and FALSEs have no quotation marks: these
are logical values, not strings. This is also why in the sort() function earlier, one of the
arguments was decreasing=TRUE; I could have used T for short, but not "TRUE" or true.
 You are right to think that this non-looping method is more confusing than the looping
method, but try not to get too intimidated. R is still following its own logic: as I noted earlier
in the chapter, the two key principles are just that R creates and manipulates objects, and that
these objects are usually vectors. Just like objects in the real world, R objects have various
components and properties; in the case of vectors, the components are the elements, which can
be referred to in a variety of ways, including by means of logic.
 Unfortunately, as you progress in your R skills, you’ll learn that simple-minded looping
can be much slower than the more confusing non-looping tricks. For example, R functions that
take vectors as arguments can seem to produce output almost instantaneously:

a = 1:10000000 # Creates the vector a = (1,2,3, ... , 10000000)
b = sqrt(a) # Computes the square root for each value in a
head(b) # See first few results instantly

 By contrast, if we try to do this same job with a loop, it goes noticeably slower:

b= numeric(10000000) # Create an all-zero vector of this length
for (a in 1:10000000) {
 b[a] = sqrt(a)
}
head(b) # See first few results after a delay

 We can actually quantify how much slower the loop runs by surrounding each of the
scripts above with the following two lines: the first stores the computer’s internal clock time
with proc.time() and the last subtracts it from the time after finishing the script. The third
variable shows the total time difference, in seconds (the other two show how long R itself was
running, ignoring all of your computer’s other processes). The result below is what I got after
running the looping script above, showing a total time of 0.7 seconds. By contrast, when I
tested the vector-based script, it only required 0.14 seconds.

Ch. 2: Data analysis software: Excel and R

27

now = proc.time() # "now" is just my own clever variable name
... Insert the script you want to time here ...
proc.time() - now

user system elapsed
0.12 0.09 0.70

 So it really helps to mentally internalize the vector principle of R. This is kind of like how
when you learn a second language, you have to restructure your brain a bit to think more like
a native speaker.
 One final difference between R and Excel worth mentioning here is that R easily lets you
create your own new functions (in Excel this would require those macros that we’re not
discussing in this book). For example, suppose you want to determine if an integer (整數) is
odd or even. One way to do this is to divide the integer by two, and see if the result is still an
integer. This latter step can be done with the help of the function floor(), which removes the
decimals (e.g., floor(3.7) = 3): if x/2 is equal to floor(x/2), x must be even.

Thus we can write a little script like so:

if (x/2 == floor(x/2)) {paste("x is even")} else {paste("x is odd")} # Remember x = 6
[1] "x is even"

 But suppose you need to do this test a lot, as part of some larger project. Wouldn’t it be
nice if there were a function like is.even(x) that would output TRUE if x is even and FALSE
if it’s odd...? But unlike Excel (=ISEVEN()), R has no such built-in function.
 No problem, we’ll just create it ourselves:

is.even = function(x) { # argument name x only within this function
 return(x/2 == floor(x/2)) # returns (outputs) a logical value: TRUE or FALSE
}

 As the script comment says, the x is just used internally to define the argument; the
function works the same way if you run it using a different variable name:

is.even(y) # Remember y = 3
[1] FALSE

 Anyway, now we can use our newly invented function inside if(), for example like so:

if(is.even(y)) {paste("y is even")} else {paste("y is odd")}
[1] "y is odd"

 New functions can be as complex as we need them to be, taking whatever arguments we
want them to take. But after we create them, we just use them like regular functions. For

Ch. 2: Data analysis software: Excel and R

28

example, even though our invented is.even() function takes just one numeric argument, R’s
vector principle means that it will automatically be applied to entire vectors, testing the
evenness of each element.

(1:10)[is.even(1:10)]
[1] 2 4 6 8 10

 By the way, note the parentheses around the vector 1:10; if we leave them off, R will try
apply the [] index just to 10, as shown below. This will confuse R, since 10 is a one-element
vector, so it doesn’t have all the elements implied by the five-element Boolean vector
is.even(1:10) part. The result will be a syntax error complaining about values that are NA (not
available) or even NaN (“not a number”):

1:10[is.even(1:10)]
Error in 1:10[is.even(1:10)] : NA/NaN argument
In addition: Warning message:
In 1:10[is.even(1:10)] :
 numerical expression has 5 elements: only the first used

 You can see where this error arises by trying this bit of nonsense:

10[is.even(1:10)]
[1] NA NA NA NA NA

 In other words, as we saw before, R is too stupid to tell you exactly what went wrong,
more like a crying baby than a friendly teacher. To find your mistake, you may have to do an
internet search. Lucky you’re a lot smarter than R or any other mere computer program. Just
don’t smash your computer while you’re trying to figure it out.

4.3 Excel and R can play together

 So far we’ve practiced using Excel and R separately, but I doubt I’m unusual in using
both together. The visual, hands-on nature of the Excel interface makes it much easier to use it
for certain things (like running quick analyses or making quick graphs), while the statistical
programming language nature of R makes it essential for doing other things (like running fancy
analyses or making complex graphs).
 In particular, even if I mainly want to do my analyses in R, it’s very useful to first take a
look at my data in Excel, or even perform some basic adjustments to it. For that reason, it’s
very common for me to start my R analysis by copy/pasting data from an Excel file into a text
file, and then loading the text file into R. (R actually has tools for loading in Excel files directly,

Ch. 2: Data analysis software: Excel and R

29

but since Excel cells can contain lots of non-R functions and formatting and such, this doesn’t
seem to me the best way to do it.)
 To illustrate how this works, and to teach you some more really basic Excel and R
concepts, let’s look at the Excel file Jabberwocky_ExcelFreqs.xlsx. This contains the results
of the manipulations I described earlier when we were calculating word frequencies. It looks
like the following, since I’ve also created headers for the two crucial columns at the top. By
the way, it’s often useful to “freeze” the header row in a different way from our “freezing”
above, namely by clicking the top row number (1), going to the View [檢視] menu, opening
the Freeze Panes [凍結窗格] options and choosing Freeze Top Row [凍結首欄]. Then you
can scroll down a long spreadsheet while keeping the headers visible.

 A B
1 Word Freq
2 the 19
3 and 14
4 he 7
5 in 6
6 jabberwock 3
...

 Now let’s load it into R. As noted above, the most flexible way to start this process is to
first copy/paste from the Excel file into a text file; let’s call it Jabberwocky_Freqs.txt. Notice
that this process automatically separates the columns with tabs (that is, the big spaces you get
when you hit the tab key [製表鍵]), but since the words aren’t all the same length, in the text
file the columns are all ragged. Don’t worry; R will just look for the tabs so it doesn’t have to
look nice.
 Since this file contains two columns (the words and their frequencies), we shouldn’t use
readLines(), since that creates a vector. Instead we’ll load it into R as a data frame. Data
frames are the usual way that R likes data; they are formatted like an Excel spreadsheet, except
that each column must be a vector (of numbers or character strings or whatever) that you can
name (as we did here). Since this is a tab-delimited file, we will use the function read.delim()
(notice the dot - lots of R functions have dots in them), and as usual, we should give the loaded-
in thing a name:

jabfreq = read.delim("Jabberwocky_Freqs.txt")

 Maybe someday instead of a tab-delimited file you’ll want to load in a CSV file (with
comma-separated values), which separates the columns with commas rather than tabs; such
files are produced by many programs that linguists use (since tabs don’t always work the same
way on different computer systems, but commas always do), such as PsychoPy, the free

Ch. 2: Data analysis software: Excel and R

30

software for designing and running psychology experiments (Peirce & MacAskill, 2018). In
that case, you use the function read.csv().
 To see what we loaded in, we could type the name of the data frame, but it’s got lots of
lines, so if we just want to get a general idea of its contents, we could use the head() function
to show the top six lines:

head(jabfreq)
 Word Freq

1 the 19
2 and 14
3 he 7
4 in 6
5 jabberwock 3
6 my 3

 So now R knows there’s a data frame called jabfreq that contains columns called Word
and Freq. It doesn’t know Word and Freq by themselves, though:

Word
Error: object 'Word' not found

Freq
Error: object 'Freq' not found

 If we want to refer to the columns (as we do in order to do anything with them), we could
copy the jabfreq variables into R’s main workspace by entering attach(jabfreq) and later,
when we want to hide them again, entering detach(jabfreq), but that can get confusing
(especially when you’re working with different data frames that happen to have variables with
the same names). So most of the time, a better (though uglier) way to refer to data frame
columns is to use the $ symbol, as shown below (the syntax is always X$Y, where Y is an
object “inside” the main object X). So typing jabfreq$Word will show us just the words and
jabfreq$Freq will show us just their frequencies:

jabfreq$Word
[1] "the" "and" "he" "in" "jabberwock" "my"
[7] "through" "all" "as" "beware" "borogoves" "brillig"
...

jabfreq$Freq
[1] 19 14 7 6 3 3 3 2 2 2 2 2 ...

Ch. 2: Data analysis software: Excel and R

31

 Another useful thing to know about loading data frames relates to missing data. In real
life it’s common for something to go wrong (e.g., somebody skips an item in an experiment),
leaving a “hole” in your neatly organized data set. In that case, when creating the data file in
another program (Excel or otherwise), you can put NA (for “not available”) in the cells with
missing data (and this will happen automatically if R loads in a tab-delimited file with gaps in
it, assuming the number of tabs is the same in all of the rows). After you load the data into R,
you can do various things with the rows with missing data, including removing (omitting) these
rows entirely with the na.omit() function. Since RTdat isn’t missing any data, I’ll demo this
with a tiny data frame created using the data.frame() function. Note that NA is a type of object,
not a string; note that the whole row is deleted, not just the NA itself; and note that the row ID
number is deleted too.

dumb = data.frame(X=c("Noun","Verb","Adj"),Y=c(4,NA,6))
dumb

 X Y
1 Noun 4
2 Verb NA
3 Adj 6

na.omit(dumb)

 X Y
1 Noun 4
3 Adj 6

 So that’s loading data into R. How do we get the data out again? If you only want R to
use it again later, you can save a lot of space on your computer if you create an R-specific file
(unreadable by a text editor, Excel, or humans), by using the save() function. Of course, even
our original text file was pretty tiny, so doing this doesn’t make a big difference here:

save(jabfreq, file="jabfreq.R") # You don't need the ".R" filename extension; my habit

 If we want to process this in R again later, you use the load() function, which puts an
object into the workspace with the name you created earlier (which you may have forgotten,
so look for it using ls()):

load("jabfreq.R")

 But since we’re talking about communication between R and Excel, how do we save an
R result in a format the Excel can read? One way is to use the write.table() function, but since
by default this separates by spaces rather than by tabs, you also need to specify tabs as the
separator symbol, using the R-friendly code "\t" (that’s a backslash, not a slash):

Ch. 2: Data analysis software: Excel and R

32

write.table(jabfreq, "jabfreq.txt", sep = "\t") # "\t" = tab (with backslash)

 Now you can open this with a text editor and copy/paste the contents into Excel, or maybe
even open it directly using Excel.

4.4 An important new R dialect: the tidyverse

 Hopefully by now you agree with me that R can do some interesting things, but probably
you also agree with me that it doesn’t always do things in the most obvious or elegant way.
This is inevitable with any computer system, so pretty soon somebody comes along with a new
format that they hope will become standard, but inevitably not everybody likes that format
either, so other formats get proposed, and so and so forth, until the situation becomes messy
again, just at a higher level (for a classic cartoon about this problem, see:
https://xkcd.com/927/). This applies to statistics textbooks too, of course, which is why I keep
saying you shouldn’t rely just on this one.
 Anyway, the point of the story is that an influential data scientist and R programmer
named Hadley Wickham (for how he got his influence in the first place, I’ll tell you soon) has
recently created what’s quickly becoming a new “standard” version of R that he calls tidyverse
(cute-ese for “tidy universe” of course); for the full details, see https://www.tidyverse.org/,
along with Wickham & Grolemund (2016) and Wickham et al. (2019). As Wickham and his
collaborates openly admit, it is an “opinionated” collection of packages that allows you to
interface with confusing R functions in a (hopefully) less confusing way. Some linguists find
that the tidyverse (i.e., the world created by the tidyverse package)
is so useful that they rely on it exclusively to teach statistics to their students (e.g., Winter,
2019), and indeed when you search for R help on the web nowadays, the helper often will
assume that you use it too.
 On the one hand, these recent developments don’t make all the non-tidyverse textbooks
and websites just disappear, so while searching for help you have to be ready to understand
both the old R dialect and the new tidyverse dialect, which is annoying (see above cartoon
again). On the other hand, the tidyverse basically just adds some new functions to help do stuff
that you can also do without them, so it’s not the end of the world if you don’t use it. Indeed,
my impression is that like other of the fancier corners of R, the tidyverse is really mainly aimed
at high-powered data scientists, not ordinary linguists who just want to do some basic analyses
(let alone their thesis committee members or conference reviewers or journal reviewers, who
may not know how to use R at all). So... where appropriate in this book, I’ll explain tidyverse
stuff, but I won’t insist that you use it.
 So what makes the tidyverse tidy? It doesn’t do statistics in a new way, but it does try to
help humans better understand the summarizing and modeling of data (two of the key goals
noted in chapter 1). After explaining how to get it, I’ll review three subsets of its tools. For

https://xkcd.com/927/
https://www.tidyverse.org/

Ch. 2: Data analysis software: Excel and R

33

linguists the most useful are those relating to character strings, next most useful are tools
relating to the way you format and interact with data, and the least useful (at least for ordinary
linguists rather than high-powered data scientists) are tools for automating the reporting and
sharing of analyses.

4.4.1 How to install tidyverse (or any other R package)

 Even if you never use tidyverse, it is very useful to learn how to install new packages into
R, and we’ll be doing this off and on throughout the whole book, so we may as well practice
now.
 Before installing tidyverse (or any other R package), you may as well first check to see
if you already have it, by seeing if R can load its “library” of functions:

library(tidyverse)

 If you get the following error, than you don’t got it yet:

Error in library(tidyverse) : there is no package called ‘tidyverse’

 The easiest way to install a package in the R Windows version is to go to the Packages
menu and choose Install package(s)..., which will give you a little pop-up window with a list
of mirrors (as usual, my Mac readers will have to figure out the equivalent for their system,
including Mac-specific problems like packages that download but that R somehow can find -
Windows sometimes has this problem too, and you just have to try various pieces of internet
advice until it works, starting with https://cran.r-project.org/bin/windows/base/rw-
FAQ.html#Packages).
 When installing new packages, the first mirror listed has the mysterious name “0-Cloud”:
that’s actually run by the RStudio company (but if you’re actually running RStudio you would
be installing packages using the RStudio menus anyway: it’s in Tools > Install Packages). But
you can also choose to be patriotic and use a local mirror, like “Taiwan (Taipei)” (Taichung
used to have one but I guess they gave up). After you’ve chosen the source you want to use,
you’ll see an extremely long list of R packages. The list is in alphabetical order, so just keep
scrolling until you find the package you want, in this case tidyverse. This package is just a
package of other packages, so it will install those too, as you’ll see from a bunch of text
scrolling down the screen.
 Again, this shows how clicking a menu option is really just short-hand for running
command lines. In fact, you can get the same result by typing the following (the disadvantage

https://cran.r-project.org/bin/windows/base/rw-FAQ.html%23Packages
https://cran.r-project.org/bin/windows/base/rw-FAQ.html%23Packages

Ch. 2: Data analysis software: Excel and R

34

is that you’ll have to memorize this specific function - note the plural “s” even though we’re
only installing one package - instead of just remembering which menu items to click).

install.packages("tidyverse")

 Fortunately, you only need to install a package once (theoretically even after updating the
whole R program, though doing this may also require checking that FAQ). Package creators
often update their creations, though, so you can also check for updates with the
Packages/Update packages... menu option. Every time you use a non-base package, just start
it up with the function library(), as I’ll illustrate throughout the rest of the book.
 Now that you know how to install packages, I’d like to remind you that you might also
want to try installing the Rcmdr package, which runs the Rcommander tool that I mentioned
earlier. Rcommander provides R with a more user-friendly GUI, with menus more similar to
those in Excel or SPSS. It even nativizes to your computer’s default language (you can change
this to a different language by choosing Edit from R’s main menus, selecting GUI
preferences..., then typing your preferred language into the box at the upper right). After
installing Rcmdr, load it with library(Rcmdr), and if you happen to close it while keeping R
open, you can restart it with the function Commander(). As I said, I won’t use Rcommander
in this book, but if you like it, go ahead and use it. Note also that the philosophy of Rcmdr is
the total opposite of that of tidyverse, namely visual but limited old-timey-stats style vs.
abstract but powerful data science style.

4.4.2 Dealing with Unicode problems

 Two of the packages in the tidyverse are called readr and stringr (the latter based on an
older and more complex package called stringi; Gagolewski, 2021); as the names suggest,
these are packages for reading in data and working with character strings, linguists’ favorite
things. Crucially, this means the tidyverse helps R work well with Unicode, including Chinese
characters.
 In order to illustrate the problems that base R has with Unicode, we need a file with non-
ASCII symbols, so we have to take a break from “Jabberwocky” for a bit. We’ll work with the
file TsaiFreq.txt, which contains 13,058 Chinese distinct characters (in the “Char” column) and
their frequencies (in the “TsaiFreq”) column, derived from a 171,882,493-character corpus
compiled by Chih-Hao Tsai (http://technology.chtsai.org/charfreq/). By the way, if you view
this file on the web the characters may already look garbled, but that’s because browsers are
dumb too; it’s actually in perfectly good Unicode, as we’ll see eventually below.
 Let’s first see what happens in English Windows, which is what I use. We go to load in
the data frame like so, naming it tf (for Tsai frequency):

http://technology.chtsai.org/charfreq/

Ch. 2: Data analysis software: Excel and R

35

tf = read.delim("TsaiFreq.txt")

 No error message, so all seems well. But then we look inside it:

head(tf)

 Char TsaiFreq
1 çš„ 6538132
2 æ˜¯ 3200626
3 ä¸\u008d 2831612
4 æˆ‘ 2584497
5 ä¸€ 2542556
6 æœ‰ 2289333

 What the heck...? R can’t read Chinese, so it turns everything into nonsense. It does
particularly badly with the third character, where actually spells out a Unicode code number
(though even that is garbled, as we’ll see in a moment). And all of these are super-common
characters too, so they’re listed from most to least frequent. Pretty pathetic, R!
 Before I learned about stringr, I created some functions for reading and writing Unicode
files and put them up on my homepage. If you want to try them, just type in
source("http://personal.ccu.edu.tw/~lngmyers/UnicodeTools.R") - yes, the source()
function that I mentioned earlier can actually run code from the internet. This will add three
new functions to your workspace: readLines.uni(), which loads Unicode text as a single string
as we did with “Jabberwocky”, read.delim.uni(), which loads a tab-delimited Unicode data
frame file, as we’ll be using in most of the rest of this book, and write.uni(), which saves
Unicode text or a data frame as text file.
 These functions work OK in English Windows. For example:

source("http://personal.ccu.edu.tw/~lngmyers/UnicodeTools.R") # Just do this once
tf = read.delim.uni("TsaiFreq.txt")
head(tf)
 Char TsaiFreq

2 <U+7684> 6538132
3 <U+662F> 3200626
4 <U+4E0D> 2831612
5 <U+6211> 2584497
6 <U+4E00> 2542556
7 <U+6709> 2289333

 Don’t worry about the Unicode codings shown here; that’s not the fault of my functions,
but of how R displays data frames in English Windows. The contents themselves are OK, as
we can see if we just look at the Char column (I’ll explain the “levels” thing in a later chapter):

Ch. 2: Data analysis software: Excel and R

36

head(tf$Char)
[1] 的 是 不 我 一 有
13058 Levels: ...

 There are still some serious problems, however. With very very low frequency characters
(even rarer than those at the bottom of the Tsai frequency list), R keeps them in Unicode coding
and never shows them as characters at all, and in fact can’t even count them correctly if they’re
in a string. Even worse, if you use Chinese Windows, my functions don’t work at all. (And as
usual, I don’t know anything about Mac R, but I’m not optimistic.) Whether you use the usual
read.delim() or my special read.delim.uni(), you get a fatal error, with the message saying R
can’t recognize certain characters from the very first line (and indeed, as shown by the English
message below, this happens even if you use English R in Chinese Windows):

tf = read.delim("TsaiFreq.txt")
Error in type.convert.default(data[[i]], as.is = as.is[i], dec = dec, :
 invalid multibyte string at '<e7><9a><84><09>6538132'

 This is the kind of nonsense that special-purpose file-reading and string-processing
packages were invented to solve. Specifically, using the tidyverse package’s readr package,
we can get the results we want, in both the English and Chinese versions of Windows. Instead
of using base R’s read.delim() function, we the tidyverse’s read_delim() function (note that
tidyverse function names never contain dots, but many contain underlines, making them
visually distinct from base R functions). Technically, read_delim() creates a data frame that’s
inside a special wrapper that I’ll explain in the next section, so to avoid explaining that stuff
now, we’ll also use the function as.data.frame() to convert it back to an ordinary data frame:

library(tidyverse) # You only have to do this once per R session
tf = as.data.frame(read_delim("TsaiFreq.txt")) # The key package here is readr

 Both of the above commands will generate a bunch of tidyverse gobbledygook, but you
can ignore all that. The main thing is that everything is OK with our Unicode now. In fact, if
we look inside this data frame in Chinese Windows, we can even see the characters directly:

head(tf)

 Char TsaiFreq
1 的 6538132
2 是 3200626
3 不 2831612
4 我 2584497
5 一 2542556
6 有 2289333

Ch. 2: Data analysis software: Excel and R

37

 If you want to other things with strings, in Unicode or otherwise, the many functions in
the stringr package may make things easier than with base R; see the cheat sheets at
https://stringr.tidyverse.org/.

4.4.3 Tables vs. tibbles

 As noted in the previous section, the tidyverse actually wraps data frames in what it thinks
is a simpler-looking object, even though deep down it’s still just a data frame. Consistent with
the cutesy style of the tidyverse, this kind of object is called a tibble (sounds like “table”, get
it?), and that’s also the name of the package inside the tidyverse package that handles them. I
won’t use tibbles in this book, but since you may encounter them on the web and other
textbooks (particularly Winter, 2019), I thought I should explain them anyway (see the
creator’s introduction at https://r4ds.had.co.nz/tibbles.html). Moreover, the tidyverse also
comes with the package dplyr (sounds like “d(ata frame) pliers”, get it?), which has some
useful functions for manipulating both tibbles and ordinary data frames (see the introduction
at https://r4ds.had.co.nz/transform.html).
 The main difference between tibbles and ordinary data frames is how they are displayed.
To see this, let’s go back to the Tsai frequencies and load it as a tibble this time (i.e., without
using as.data.frame()):

library(tidyverse) # Remember, you only have to do this once per R session
tft = read_delim("TsaiFreq.txt") # Final "t" for "tibble"

 When we use the head() function on the tibble, we get pretty much the same thing as
before, except now it tells us the dimensions of the thing we have created (6 rows and 2 columns;
R always mentions rows before columns) and the types for each of the variables (Char is a
character vector and TsaiFreq is a “double” [= ordinary number] vector).

head(tft)
A tibble: 6 x 2

 Char TsaiFreq
 <chr> <dbl>

1 的 6538132
2 是 3200626
3 不 2831612
4 我 2584497
5 一 2542556
6 有 2289333

https://stringr.tidyverse.org/
https://r4ds.had.co.nz/tibbles.html
https://r4ds.had.co.nz/transform.html

Ch. 2: Data analysis software: Excel and R

38

 However, we don’t even need to use head(), since unlike the case with data frames, when
you type the name of the tibble it just shows you the top few rows:

tft
A tibble: 13,058 x 2
 Char TsaiFreq
 <chr> <dbl>

1 的 6538132
2 是 3200626
3 不 2831612
4 我 2584497
5 一 2542556
6 有 2289333
7 大 1891383
8 在 1715554
9 人 1598855

10 了 1507218
... with 13,048 more rows

 If you do want to scroll through the entire tibble, you have to use a totally different
command:

print(tft, n = Inf) # Inf = infinity, a number that R actually recognizes

 Tibbles also don’t want to show you all of your columns if you have too many, so in case
you do want to show all columns, you would do this:

print(superwidetibble, width = Inf) # For a super-wide tibble (if you had one)

 While tibbles themselves don’t seem all that useful to me, most of the other tidyverse
functions that process tables produce tibbles as output, so you have to be ready in case one
pops up. Moreover, the functions in the dplyr sub-package do seem useful, and they work for
ordinary data frames as well. Let me illustrate the five main ones here on the data frame tf,
comparing how they work with the way base R would do the same things. I won’t use them in
the rest of the book, but that doesn’t mean you can’t use them!
 The first function lets you add new columns by changing (“mutating”) other column
variables, which we’ll be doing a lot later on. In particular, we will often want to take the
logarithm (對數) of frequencies, for reasons I’ll discuss in a later chapter. The R function for
this is log(). Here’s the ordinary way to do it:

tf.orig = tf # Let's save the original version so we can demo each function separately
tf$LogFreq = log(tf$TsaiFreq)

Ch. 2: Data analysis software: Excel and R

39

head(tf)
 Char TsaiFreq LogFreq
1 的 6538132 15.69316
2 是 3200626 14.97886
3 不 2831612 14.85636
4 我 2584497 14.76504
5 一 2542556 14.74868
6 有 2289333 14.64377

 Now here’s the tidyverse way:

tf = tf.orig # Go back to the original for this demo
tf = mutate(tf, LogFreq = log(TsaiFreq))
head(tf)
[... same as above...]

 The second function lets you select a subset of columns. For the ordinary method,
remember that in R, rows are always specified before columns, so if you put nothing before
the comma inside [] that means you want to select all of the rows. So here’s how to look at just
the frequency columns:

tf.freqs = tf[,c("LogFreq","TsaiFreq")] # Or tf[,2:3], i.e. columns 2 through 3 for all rows
head(tf.freqs)
 LogFreq TsaiFreq
1 15.69316 6538132
2 14.97886 3200626
3 14.85636 2831612
4 14.76504 2584497
5 14.74868 2542556
6 14.64377 2289333

 Here’s the tidyverse way:

tf.freqs = select(tf, LogFreq:TsaiFreq)
[... same as above...]

 The third function lets you filter out rows by a logical variable. Here’s the ordinary way
to do this, filtering out just the rows with the lowest frequency:

tf.lowestfreq = tf[tf$TsaiFreq==min(tf$TsaiFreq),] # Gap after comma = all columns

Ch. 2: Data analysis software: Excel and R

40

tf.lowestfreq # Not many of these, so we can list them all
 Char TsaiFreq LogFreq

13052 踧 4 1.386294
13053 紨 4 1.386294
13054 縪 4 1.386294
13055 薆 4 1.386294
13056 顁 4 1.386294
13057 鷍 4 1.386294
13058 鵧 4 1.386294

 Here’s the tidyverse version, with the only difference being that it doesn’t use the original
row numbers:

tf.lowestfreq = filter(tf, TsaiFreq == min(TsaiFreq))
tf.lowestfreq
 Char TsaiFreq LogFreq

1 踧 4 1.386294
2 紨 4 1.386294
3 縪 4 1.386294
4 薆 4 1.386294
5 顁 4 1.386294
6 鷍 4 1.386294
7 鵧 4 1.386294

 The fourth function lets you order (“arrange”) the rows. Here’s how to do it in the ordinary
way, arranging the rows from least to most frequent:

tf.sorted = tf[order(tf$TsaiFreq, decreasing = F),] # Decreasing is default; here increasing
head(tf.sorted) # Reorders row numbers too
 Char TsaiFreq LogFreq
13052 踧 4 1.386294
13053 紨 4 1.386294
13054 縪 4 1.386294
13055 薆 4 1.386294
13056 顁 4 1.386294
13057 鷍 4 1.386294

 And here’s how tidyverse does it:

tf.sorted = arrange(tf, TsaiFreq) # Ascending is default; cf. desc(TsaiFreq) for descending

Ch. 2: Data analysis software: Excel and R

41

head(tf.sorted) # Doesn't reorder row numbers
 Char TsaiFreq LogFreq

1 踧 4 1.386294
2 紨 4 1.386294
3 縪 4 1.386294
4 薆 4 1.386294
5 顁 4 1.386294
6 鷍 4 1.386294

 The fifth and final major function lets you create a summary table from your data. This
makes most sense when your data has groups, so let’s split the Tsai frequency data into groups
of characters above and below the mean log frequency, and then calculate the mean for each
group. Here’s the ordinary way:

tf$Group = "Upper" # We'll fill in the "Lower" part shortly
tf$Group[tf$LogFreq <= mean(tf$LogFreq)] = "Lower" # Less than or equal to mean
head(tf) # You check yourself!
tail(tf) # You check yourself!

 Just for your information, here’s one way to do this in one line in the tidyverse way (can
you figure out how it works?):

tf2 = mutate(tf, Group=c("Upper","Lower")[1+(LogFreq <= mean(LogFreq))])
head(tf2) # You check yourself!
tail(tf2) # You check yourself!

 Now let’s compute by-group means in the ordinary way:

tapply(tf$LogFreq, tf$Group, mean)

Lower Upper
2.665762 8.112729

 And here’s the tidyverse way; the main differences are that the output is a tibble and that
the displayed values are rounded a lot more (this is just for the display - the actual values are
the same as above).

summarize(group_by(tf, Group), Mean = mean(LogFreq)) # "Mean" is my own variable
Note: if you're from New Zealand like the tidyverse creator, you can use "summarise()"
A tibble: 2 x 2
 Group Mean
 <chr> <dbl>
1 Lower 2.67
2 Upper 8.11

Ch. 2: Data analysis software: Excel and R

42

 In the tidyverse, the tibble philosophy also applies to other types of tables encountered in
R, in particular those reporting statistical results. But we’ll save that for a later chapter!

4.4.4 Workflow

 In order to make a report for our fellow human beings, we have to get the statistical or
modeling results, and before that we have to get the data, and doing that requires using a
computer program like R. Computer experts call this kind of process the workflow. Before
explaining how tidyverse advocates like Wickham & Grolemund (2016) and Winter (2019)
want us to do this, let me first explain how I personally do it.
 As I emphasized above, two of the biggest advantages of R over Excel are that your script
lets you automatically do a series of complex things (since it’s a computer language) and that
you have a permanent record of what you did (since the script is written down). The automating
aspect even applies to finding and saving the data on your computer, even if they are in more
than one folder (e.g., if your raw experimental results fill up one folder so you want to put the
overall analysis in a separate place to avoid mixing up different types of files).
 So what I usually do is write my script piece by piece, testing it each piece until I’m sure
it works, and then I put all the pieces together, run it, and save the results (sometimes just
copy/pasting it into my R script file, with # marks since it’s not code), and later when I type up
the report for my fellow human beings, I copy/paste these results, including graphs, into a Word
file. That’s my way, but it’s not Wickham’s or Winter’s, and it doesn’t have to be yours.
 Regarding finding files, say I have a folder called MyStudy and inside this is a folder
called MyData and another folder called MyAnalyses. I put my R script into MyAnalyses but
I want it to look inside the MyData for the data file experiment.txt and then save the results in
MyAnalyses. So I first use R’s menu to set the directory to MyStudy, and then I write a script
like this:

exp.data = read.delim("MyData/experiment.txt") # Look inside MyData for data
... do analysis, creating stats.results
write.table(stats.results,"MyAnalyses/results.txt") # Write results in MyAnalyses folder

 I can even move up a folder by using "..". For example, if my working directory has been
set to MyAnalyses using the R menu, I can still reach MyData like this:

exp.data = read.delim("../MyData/experiment.txt") # Go up and then down into MyData

 This works perfectly (at least in Windows; things may work differently in Mac or Linux
systems, but I don’t think so). Even if I send a colleague the folder MyStudy, containing

Ch. 2: Data analysis software: Excel and R

43

MyData and MyAnalyses, that person should have no trouble running my code, since the
locations of all the files are all relative to each other, not absolute for just my computer.
 So how do Wickham, Winter et al. want us to do things? The first thing they recommend,
since they are computer nerds, is to make R more like Unix (or Linux), the computer operating
system, by adding the concept of the pipeline (管道). This takes an object, puts it into the first
function in the pipeline, then puts that result into the next function in the pipeline, and so on.
What’s better for good workflow than a good pipeline?
 In Unix this operation is represented by the character “|” because it looks like a pipe, but
since this symbol already has other purposes in R (as we’ll see later), and since the next-best
symbol would be “>” (like an arrow) but that’s already used too (as we’ve already seen), and
since R has other operators that surround already-used symbols with “%” on each end, the
result is that that tidyverse pipe symbol is the awful-looking %>%. This is handled within
tidyverse by the magrittr package, which again its a joke name, this time coming from the
Belgian surrealist painter René Magritte [雷內·馬格利特] due to his famous painting of a pipe:
https://en.wikipedia.org/wiki/The_Treachery_of_Images.
 To make our discussion less surreal, if you have the functions fun1() and fun2() and the
objects X, Y, Z (even if Y and Z are empty, i.e. you only have object X), then this...

X %>% fun1(Y) %>% fun2(Z)

... does the same thing as this (note that the object before %>% gets treated as the first
argument of the function after %>%)...

X1 = fun1(X,Y)
fun2(X1,Z)

... or in one line...

fun1(fun2(X,Z),Y)

 The second version uses a temporary variable that you have to memorize while reading
the script even though you don’t really care about it, while the third version is totally confusing
to read. That’s why many programmers like piping.
 Here’s a real example you can run:

library(tidyverse) # Again, you only need to do this once per session
x = c(3,1,4,1,5) %>% # Put %>% at the end of each line to make reading even easier
 -5 %>% # Subtract 5 from all elements in the vector (indenting helps readability)
 rep(2) %>% # Repeat the vector 2 times
 mean # You don't even need () for one-argument functions

https://en.wikipedia.org/wiki/The_Treachery_of_Images

Ch. 2: Data analysis software: Excel and R

44

x # First line assigned a value to x, so result is a new value for x
[1] -2.2
x = c(3,1,4,1,5) # What if we define the object before we start piping?
x %>% # Now we start the pipeline here
 -5 %>%
 rep(2) %>%
 mean # It outputs the same result, but...
[1] -2.2

x # ... the original object isn't changed
[1] 3 1 4 1 5

 This is doing the same thing as this ordinary R code:

x = c(3,1,4,1,5)
x1 = x # So we don't change the original object
x1 = x1-5
x1 = rep(x1,2)
mean(x1)
[1] -2.2

 I won’t use pipelines in this book, but if you think they’re for you, go for it. You might
see it on the web or in other books anyway.
 The other big thing that tidyverse experts want you to do with your analyses and reports
is to “knit” them into Web- and Word-friendly HTML files using the knitr package (Xie, 2015).
This is easiest to do if you’re working in RStudio (there are special-purpose menus for it) but
it can also be done in ordinary R (https://yihui.org/knitr/). I’ve never tried it, though, so if
you’re curious, search the internet for help. As I said, I’m currently happy with copy/pasting
all my stuff by hand.

5. Graphs

 I end this survey of the fundamentals of Excel and R with a pretty big topic in itself: how
to make graphs. Then I apply some of these graphing methods to our “Jabberwocky” data again
(in case you haven’t forgotten about it after all this time).

5.1 Graph basics

 Human beings, like our primate relatives, are visual animals: a picture is worth a thousand
words. That’s why graphs or plots are so useful for expressing scientific information. This is
not only to communicate information to the audience of your report, but also to communicate
information intuitively to yourself, while you’re still doing your research. There have been

https://yihui.org/knitr/

Ch. 2: Data analysis software: Excel and R

45

times when I’ve broken my head trying to figure out why my statistical analysis was coming
out so weird, and only when I make a graph I see that my assumptions about the data were all
wrong. So I’ve learned my lesson: make graphs all along the way, not just at the last minute.
 Graphs are more intuitive than tables, but they may also be less precise. Use tables instead
of graphs if you don’t have a huge amount of data, and/or the precise values are important to
what you want to communicate. Don’t give the exact same information in both a table and a
graph: it wastes space and misleads your reader into thinking that there must be some crucial
difference between them, when there really isn’t.
 The choice of graph depends partly on the measurement scale of your data. The scale
also affects the choice of statistical analysis (as we’ll see in later chapters).
 A nominal scale puts things into different categories (nominal = “relating to names”)
without claiming that there is an order or values between the categories. For example, in a child
language study you could divide children into girls and boys, and divide the words they produce
into nouns, verbs, function words, and “other”. All other types of scales used in statistics are
quantitative, where there is a natural numerical way to describe each item.
 An ordinal scale is based on ranking, not on the specific number associated with each
item. For example, you could rank languages by the number of speakers, or the degree of
acceptability of a sentence on a Likert scale (named after American psychologist Rensis Likert
[1903-1981]), from 1 = impossible to 7 = perfect. The numbers in an ordinal scale are always
positive integers, so values like 3.5 don’t make any sense.
 Continuous scales (e.g., where 3.5 would make sense) are probably the most common in
statistics, especially the ratio scale, which has a zero point so that ratios can be defined (e.g.,
4 is twice as big as 2, with 0 as the baseline). For example, reaction time (RT) is the number
of milliseconds (ms) between a stimulus and a response in a psycholinguistic experiment, with
0 ms being the lowest logically possible RT.
 Line graphs (折線圖) are almost always restricted to numerical scales like ordinal or
continuous ones. For example, the Southern Min graph in chapter 1, repeated below in Figure
1, is an appropriate line graph because the points form a natural order (shorter to longer
utterances).

Ch. 2: Data analysis software: Excel and R

46

Figure 1. A good line graph (from Myers & Tsay, 2015) (made in R)

 By contrast, the graph in Figure 2 is bad, since each point represents a different
experimental participant, so not only is there no natural ordering across the people, but it makes
absolutely no sense to talk about measurements that somehow lie “between” them.

Figure 2. A bad line graph (made in Excel)

 The data in Figure 2 should instead be plotted with a bar graph or bar plot (長條圖),
where each bar represents a distinct category on a nominal scale. Further examples are shown
in Figure 3, where the nominal categories are word types or experiments. A bar plot of a
frequency table is called a histogram (直方圖、矩形圖), which will become very important
starting in the next chapter.

0
5

10
15
20
25
30
35
40
45

NZ JM JT DC VR HW

Sc
or

es

Participants

Ch. 2: Data analysis software: Excel and R

47

 Figure 3. Good bar graphs (made in Excel)

 Since later we’ll redraw the bar graph on the right of Figure 3 in R, let me explain how I
made this version in Excel. First, I typed in my fake data, along with labels at the top and left,
like so (if this were real data, I could have computed it using cell functions, perhaps with
=AVERAGE() across a sample of real reaction times). Then I just selected this 3 × 3 range of
cells, poked around Excel’s menus (e.g., under Insert), clicked the icon that looks like a bar
plot, and then adjusted the colors and borders and added the y-axis label.

 A B C
1 Exp. 1 Exp. 2
2 nouns 670 780
3 verbs 739 653

 Note that I made sure the colors in my bar graph print clearly on black-and-white printers.
Believe it or not, some people like to print things out when they want to read them carefully,
and most people don’t have access to a color printer. It’s fine to use colors for electronic
displays, including in presentation slides, but try to make sure they don’t all end up looking the
same when you print them in black and white.
 Another important type of graph is called a scatter plot (散佈圖), where each dot
represents a single entity that has two continuous numerical values. The graph in Figure 4, for
example, shows fake data for a bunch of fake adults, each of whom has an age and a vocabulary
size. Scatter plots are especially important when looking for correlations (and as I mentioned
in the first chapter, correlations are closely related to modeling, one of the key jobs of statistical
analysis). Thus the scatter plot in Figure 4 seems to show that there is no correlation between
age and vocabulary: no matter what age you choose on the x-axis, the average location of the
dots remains about the same on the y-axis (vocabulary size).
 A scatter plot also reflects another key concept in statistics: variability. Even if there were
a pattern here, the dots would still form a cloud, just a cloud with some sort of shape or direction.
(Note that the apparent dip in vocabulary size around 40 years is due to pure randomness: as
I said, I faked these data to make sure there was no real pattern in them.)

0

20

40

60

80

100

120

140

nouns verbs other

N
um

be
r o

f t
yp

es

550

600

650

700

750

800

Exp. 1 Exp. 2

R
T

(m
s)

nouns
verbs

Ch. 2: Data analysis software: Excel and R

48

Figure 4. A scatter plot (made in Excel)

5.2 “Jabberwocky” in histograms and scatter plots

 Let’s end the chapter by seeing what histograms and scatter plots can tell us about
“Jabberwocky”.
 As I just noted, a histogram is a bar plot for a frequency table. We already created the
frequency table for “Jabberwocky”, twice in fact, once using Excel and then again using R.
How can we plot it as a histogram?
 In later chapters we’ll see that both Excel and R have special functions for plotting
histograms, but only for continuous scales (divided up into so-called bins, to make the discrete
categories needed for a bar plot). In our “Jabberwocky” analysis, the entries in our frequency
table are separate words, so our data are already on a nominal scale; neither Excel and R have
special functions for plotting histograms in this type of case.
 No problem; we can just plug the frequencies into an ordinary bar plot. This is much easier
to do in Excel than in R (in fact, all of the figures above were made in Excel, except for the
Southern Min one, which was made in R). This is unsurprising because unlike R, where even
to draw pictures you have to write out the instructions as a script, Excel has a visual-style
graphical user interface (GUI), where the user mainly pokes around in menus, so that making
graphs in Excel feels more like drawing than writing.
 So to turn our “Jabberwocky” frequency table (sorted from most to least frequent word
type) into a histogram, all we have to do is select the columns containing the words and the
frequencies, find the menu item for inserting graphs, choose the icon that looks like a bar plot,
and we’re pretty much done. We’re not totally done, though, because the easiness of Excel also
means that it treats you like a big baby, making lots of decisions for you, and you may have to
fight back to make it do what you want. For example, it may want to insert a legend
(explanation box for a figure: 圖例) identifying your variables, but in this case we only have
one variable (the words), making a legend totally useless here. It’s also up to you to tell your
readers what the x-axis and y-axis represent, and maybe to give a title to the whole thing. And
maybe change the colors too, including the color of the plot border.

5000

10000

15000

20000

25000

30 40 50 60 70 80

Vo
ca

bu
la

ry
 si

ze

Age (years)

Ch. 2: Data analysis software: Excel and R

49

 When I did all that, I ended up with the graph in Figure 5. Note that even despite all my
slapping, Excel still decided not to show all of the words on the x-axis, but I can’t really blame
it; it just ran out of room. (By the way, you can also create graphs in Word, but since its
graphing functions are more limited than Excels, the non-R graphs in this book were all made
in Excel and pasted into Word.)

Figure 5. “Jabberwocky” word frequencies

 If you are paying attention so far, you should be asking yourself one question right now:
So what? Well, a histogram shows how our data are distributed, that is, where most of the
data are and how they vary. This particular histogram makes a simple truth quite clear: most
of the lexical items in “Jabberwocky” are rare (all those stretching way out on the right side of
the graph), and only a few are common (like “the” and the few other words squeezed onto the
left side). It turns out that this is what word frequency distributions always look like, even in
huge corpora. This generalization (called Zipf’s law, after a guy named Zipf; see, e.g., Baayen,
2001) will be discussed again in later chapters, but there are a couple of implications I can
mention now.
 First, this distribution shape is what makes it so annoying to learn a second language: the
vast majority of the words that you have to learn are so rare that you’ll hardly ever need to use
them. In fact, no matter how many words you learn, there will always be even rarer words out
there yet to learn. Wouldn’t it be nice if every word was about equally common, and then all
the effort you put into learning each one would be repaid by an equal amount of usefulness?
Nope, sorry the world doesn’t work like that.
 Second, this distribution doesn’t look anything like the famous bell curve, and the bell
curve is what many statistical analyses assume that your data distribution is shaped like. So if

0
2
4
6
8

10
12
14
16
18
20

th
e

ja
bb

er
w

oc
k as

ca
m

e
hi

s
on

e
st

oo
d

tw
as

w
en

t
aw

hi
le

bi
rd

bu
rb

le
d

ca
tc

h
da

y
fo

e
ha

nd
ja

bb
er

w
oc

ky le
ft of

sn
ic

ke
rs

na
ck

sw
or

d
to

ok
uf

fis
h

To
ke

n
co

un
ts

Sample of words

Jabberwocky word frequencies

Ch. 2: Data analysis software: Excel and R

50

your data are actually distributed like Figure 5, you had better either use some other type of
statistical analysis, or figure out how to transform your data to make it a bit more bell-like.
I’ll explain both approaches in later chapters.
 Making a bar plot in R is a bit more annoying, but because R doesn’t treat you like a big
baby, you can get it to do exactly what you want (as long as you don’t smash your computer
during the process). For example, to replicate the Excel bar plot on the right side of Figure 3,
we first put the (fake) RTs into a matrix (矩陣; plural matrices), which is like a rectangle of
values (like a 2D, 3D, or any-D vector; a regular vector is like a 1D matrix).

results.mat = matrix(c(670,739,780,653),nrow=2)
rownames(results.mat) = c("nouns","verbs")
colnames(results.mat) = c("Exp. 1","Exp. 2")

 As usual, you can see what the matrix object looks like by typing its name:

results.mat
 Exp. 1 Exp. 2
nouns 670 780
verbs 739 653

 As the above code shows, the properties of a matrix object include the row and column
names, which you can change separately from the numerical values. This trick is also used by
the table() function, which creates a vector of frequencies where each element gets its name
from the original character vector elements; you can extract these names using the names()
function (as we’ll do later below).
 After putting the data into a matrix, we can make the bar plot from it, using the barplot()
function. The two versions below are exactly the same, but in the first one I split it up so I can
show you comments explaining each step. The result, which pops up in its own window (if
you’re following along in R, as you should be), is shown below in Figure 6:

barplot(results.mat, # table of values
 beside=T, # draw bars next to each other, not on top
 names.arg=c("Exp. 1","Exp. 2"), # the names at the bottom
 legend.text=c("noun","verb"), # the names in the legend box
 ylim = c(0,1100), # min & max y-axis (so legend doesn't cover bars)
 ylab = "RT (ms)" # y-axis label
)

Same thing, but not split up (you can type it all as one line; R will wrap it for you)
barplot(results.mat, beside=T, names.arg=c("Exp. 1","Exp. 2"),
 legend.text=c("noun","verb"), ylim = c(0,1100), ylab = "RT (ms)")

Ch. 2: Data analysis software: Excel and R

51

Figure 6. Basically the same as Figure 3, but using R instead of Excel

 Notice that unlike Excel, the bars in R bar plots always start from zero, and in fact it is
quite difficult to change this default (for one way to do get around the default, see the cheat
sheet StatsFunctions.pdf). This limitation is built into R on purpose: the height of each bar
should reflect the actual measurement for the bar’s category, so putting the bottom of the graph
higher than zero can exaggerate what is actually a small difference. So the pattern looks much
more dramatic in Figure 3 than in Figure 6, even though both graphs plot exactly the same data.
Lying with statistics indeed!
 Now, to make the histogram for the “Jabberwocky” frequencies in R, we simply take the
same R script that we just wrote and change only what we need to change, creating Figure 7:

jabberwocky.freq = sort(table(jabberwocky), decreasing=TRUE)
barplot(jabberwocky.freq, beside=T, names.arg=names(jabberwocky.freq),
 main="Jabberwocky word frequencies", # Main title for plot
 xlab = "Sample of words", # x-axis label
 ylab = "Token counts") # y-axis label

Ch. 2: Data analysis software: Excel and R

52

Figure 7. R’s version of Figure 5 (“Jabberwocky” word frequencies)

 Since histograms, and the frequency tables they come from, are so important to statistics,
R has an even simpler way to create Figure 7: just use the generic plot() function. This function
is context-sensitive in that it behaves differently depending on what argument you put in it,
sort of like “taking a bath” and “taking a walk” are very different kinds of taking. So if the
argument is a table object like jabberwocky.freq, plot() will assume that you want to plot a
frequency table as a histogram. Try the alternative commands below to see what happens!

plot(jabberwocky.freq) # Histogram without labels
plot(jabberwocky.freq, main="Jabberwocky word frequencies",
 xlab = "Sample of words", ylab = "Token counts") # Include same labels as Fig. 7

 Let’s turn now to scatter plots, which is another of R’s favorite kind of graph. Why?
Probably because of the central role that modeling plays in statistics, and by showing you how
the variable on the x-axis relates to the variable on the y-axis, a scatter plot is showing you a
model of how the two variables are related (e.g., how well you can predict y from x). In fact,
scatter plots are the default plot type in R: the plot() function will draw a scatter plot unless
you tell it otherwise. For example, run the following code, and you get a scatter plot with the
random vector on the y-axis plotted against their indices (1:100, for the 100 random numbers)
on the x-axis (the exact results depend on what random numbers you get when you run
runif(100)):

plot(runif(100))

Ch. 2: Data analysis software: Excel and R

53

 Just for fun, you can put this inside a loop and make some animated snow!

for (i in 1:100) {
 plot(runif(100))
}

 If you put two vectors of the same length into the generic function plot(), it will assume
that you now want to make a scatter plot, so it will put the first vector on the x-axis and the
second vector on the y-axis. As shown in Figure 8, the two vectors might be related by a
function (so the dots are not really scattered as real data would be):

plot(1:20,(1:20)^2) # The second vector gives the square for each element

Figure 8. A not very scattered scatter plot

 You can change the default dots (little open circles) by changing the pch argument (pch=1
is the default “plot character”). It’s impossible to remember what all the dot symbol codes are,
but you can find all the choices by searching the internet, or writing little bits of code, like the
one that creates Figure 9:

plot(1:20,(1:20)^2, pch=1:20) # Plot each dot with a different symbol

Ch. 2: Data analysis software: Excel and R

54

Figure 9. Some of R’s dot types

 You can also change the colors using the col argument (e.g., col=2 makes the dot red, and
so does col="red"). Try the following code, and modify it however you like:
plot(1:20,(1:20)^2, pch=15, col=1:20) # Plot each square with a different color

plot(1:20,(1:20)^2, pch=15, col=rainbow(20)) # So pretty!

 The following command (which creates Figure 10) shows that R treats line graphs just as
a special case of dot plots, with the argument type="l" (that’s a lowercase “L”, for “line”),
that is, with line segments connecting the invisible dots. You can change the line type using
the argument lty (e.g., lty=1 is the default, and lty=2 makes a dashed line), and change the
width with lwd (try it!)

plot(1:20,(1:20)^2, type="l")

Ch. 2: Data analysis software: Excel and R

55

Figure 10. A line plot

 Sometimes, it’s useful to draw a plot in steps: first draw the basics using plot(), then add
other stuff to it with other graph commands like lines() to lines to an existing plot object,
points() to add dots, text() to add character strings, or legend() to add a legend box (try it!):

plot(1:20,(1:20)^2, type="l")
lines(1:20,(1:20)*2, type="l", lty=2, lwd = 2, col="blue")
points(5,200,pch=15,col="green")
text(5,250,"A green square", col="darkgreen")
legend("topleft",legend=c("x^2","x*2"),lty=c(1,2),lwd=c(1,2),col=c("black","blue"))

 How might a scatter plot be useful to studying our “Jabberwocky” corpus? Well,
not only did Zipf observe that with a large enough corpus, words fall into that non-bell-shaped
frequency distribution, but he also noticed that they tend to show another interesting pattern:
the more common the word, the shorter it is (see, e.g., Piantadosi et al., 2011). This pattern
implies that speakers tend to try save energy when repeatedly using the same words.
 To find out if this generalization also holds in the tiny fake-word “Jabberwocky” corpus,
we first have to measure the lengths of all the words in the poem, then plot these lengths against
their frequencies. We could do this in Excel using the =LEN() function and then use Excel’s
graphing tools; here’s how to do it using R’s nchar(), names(), and plot() functions (see Figure
11).

plot(jabberwocky.freq,nchar(names(jabberwocky.freq)))

Ch. 2: Data analysis software: Excel and R

56

Figure 11. The correlation between word frequency and word length in “Jabberwocky”

 Even without prettying up the plot (e.g., by using the xlab and ylab arguments for more
meaningful x-axis and y-axis labels), it’s clear that Zipf’s word-length generalization basically
holds here, with more common words (on the right side of the x-axis) being shorter (lower on
the y-axis). Of course, given the tiny corpus, the pattern doesn’t look very smooth: basically a
lot of very long words on the left (almost all content words), and a few very short words on the
right (all function words).
 As noted above, you can make exactly the same scatter plot in Excel; please try it yourself.
In fact, because of Excel’s GUI-based design, the job is a lot easier to do, though keep in mind
that deep inside Excel’s own programming, it’s actually converting each of your menu choices
into command lines (albeit in C, not R).

5.3 Another way to make graphs in R: ggplot2

 What I’ve explained so far are some of R’s built-in base functions, but since R is open,
people are constantly trying to improve it by creating new packages with new functions. For
the past decade or so the most popular non-base graphics package is ggplot2. It gets this weird
name because it is apparently the updated version of a “grammar of graphics” (non-linguists
love abusing our terminology), most prominently advocated in Wickham (2009); other useful
introductions to it include Chang (2013) and Healy (2018). If you have a good memory, you
may recognize the name “Wickham”; it was arguably the great popularity of ggplot2 that
boosted the same guy’s tidyverse into the mainstream as well. But as with all of the tidyverse
component packages, you can install and load ggplot2 all by itself.

Ch. 2: Data analysis software: Excel and R

57

 However, despite its popularity, just as with the tidyverse more generally, I won’t use
ggplot2 much in this book, for two main reasons. First, its defaults are designed for electronic
color displays, not for black and white printing (see my complaints about that earlier). Second,
the syntax is very different from R’s normal syntax, making it confusing to learn while also
learning ordinary R (and Excel!) at the same time. Even Winter (2019), apparently a computer
genius, repeatedly confesses that he found it very hard to learn. Just as most R users probably
also use Excel but don’t want to admit it, I bet most ggplot2 users probably just copy/paste
sample code from the internet and never quite understand how it works. In this very book I will
also occasionally offer some such code for you to edit for your own purposes.
 But if you still want to get some sense of how this so-called “grammar of graphics” is
supposed to work, the key idea is this: any graph is composed of a number of partially
independent, partially interacting parameters, including the raw data itself, the graph’s shapes
(geoms, for geometric elements) used to represent it (e.g., points for a scatter plot or lines for
a line plot), and aesthetic (審美的) features like shape (indicated with the aes() function).
Unlike R’s base plotting functions, ggplot2 uses its own special syntax intended to combine
these various parameters: basically you type one command, type “+”, then type another
command, until all your graph elements and features have been added to your satisfaction.
 To demonstrate ggplot2 in action, let’s draw the bar graph in Figure 3 and 6 for a third
time. While R’s base function barplot() required us to put our data into a matrix object, ggplot2
expects bar plot data to be in a data frame (or a tibble, if you want go all-tidyverse). So let’s
put our fake data into one, using the data.frame() function:

results.data = data.frame(Experiment = c(rep("Exp. 1",2), rep("Exp. 2",2)),
 WordType = rep(c("Noun","Verb"),2), RT = c(670,739,780,653))

 You can see what this object looks like if you type its name:

results.data

 Experiment WordType RT
1 Exp. 1 Noun 670
2 Exp. 1 Verb 739
3 Exp. 2 Noun 780
4 Exp. 2 Verb 653

 After ggplot2 has been installed (by itself or as part of the tidyverse package), you turn
it on (for your current R session) using the library() command:

library(ggplot2)

And finally, here’s how ggplot2 replicates that bar plot:

Ch. 2: Data analysis software: Excel and R

58

ggplot(results.data, # Data frame with data
 aes(x=Experiment, # Aesthetics, with bottom label Experiment
 y=RT, # y-axis variable is RT
 fill=WordType)) + # fills in bar colors based on WordType;
 # + links parameters (cannot start a line)
ylab("RT (ms)") + # y-axis label
geom_bar(position="dodge", # "dodge" acts like "beside" in barplot()
 color="black", # use black edges on the bars
 stat="identity") + # "identity": use actual values, not counts
scale_fill_manual(values=c("black","gray")) + # colors of bars
theme_bw() # makes background white instead of default gray

Figure 12. ggplot2 tries to imitate Figures 3 and 6

 If we don’t care about imitating Figures 3 and 6 exactly, we can make the command
slightly simpler by sticking with ggplot2’s defaults (try it!):

ggplot(results.data, aes(x=Experiment, y=RT, fill=WordType)) +
 ylab("RT (ms)") + geom_bar(position="dodge", stat="identity")

 Personally, I don’t find the results any better than R’s base barplot() function (maybe
even a little bit worse because I hate the color choices, which remind me of a 1960s American
highway motel), and as I said, the syntax is quite different from the rest of R (those “+” symbols
would be ungrammatical everywhere else in R). However, it is nice that ggplot2’s functions
have a similar look and feel for all types of plots (bar plots, scatter plots, line plots, histograms,
and so on), rather than being all different as in base R, and that the function names are almost
English (with the typical tidyverse underlines). And if you search for help on R graphs,
everybody will assume you’re using ggplot2 anyway. So go ahead and use it if you want.

Ch. 2: Data analysis software: Excel and R

59

6. Summary

 This chapter introduced the basics of Excel and R, including how to put data into them,
how to compute various things with them, and how to make graphs with them. You can review
(some of) the different operations and commands that we discussed in the online “cheat sheet”
StatsFunctions.pdf.
 Along the way we also talked a bit about some important statistical properties of language,
like Zipf’s two laws, and introduced several crucial statistical concepts that will come up
repeatedly throughout the rest of this book: data sets (including vectors and matrices),
frequency tables, histograms, averages, correlations, and randomness.

References

Baayen, R. H. (2001). Word frequency distributions. Dordrecht: Kluwer.
Chang, W. (2013). R graphics cookbook. O’Reilly.
Chao, Y. R. (1969). Dimensions of fidelity in translation with special reference to Chinese.

Harvard Journal of Asiatic Studies, 29, 109-130.
Fox, J. (2005). Getting started with the R commander: a basic-statistics graphical user interface

to R. Journal of Statistical Software, 14(9), 1-42.
Fromkin, V., Rodman, R., & Hyams, N. (2018). An introduction to language. Cengage

Learning.
Gagolewski, M (2021). stringi: Fast and portable character string processing in R. Journal of

Statistical Software.
Gelman, A. (2013). Statistics is the least important part of data science. Blog post on Statistical

Modeling, Causal Inference, and Social Science, 14 November 2013
<http://andrewgelman.com/2013/11/14/statistics-least-important-part-data-science/>.

Healy, K. (2018). Data visualization: A practical introduction. Princeton University Press.
Myers, J., & Tsay, J. (2015). Trochaic feet in spontaneous spoken Southern Min. In Hongyin

Tao, Yu-Hui Lee, Danjie Su, Keiko Tsurumi, Wei Wang, & Ying Yang (Eds.),
Proceedings of the 27th North American Conference on Chinese Linguistics, Vol. 2, 368-
387. Los, Angeles: UCLA.

Piantadosi, S. T., Tily, H., & Gibson, E. (2011). Word lengths are optimized for efficient
communication. Proceedings of the National Academy of Sciences, 108(9), 3526-3529.

Peirce, J., & MacAskill, M.R. (2018). Building experiments in PsychoPy. Sage.
R Core Team (2018). R: A language and environment for statisticalcomputing. R Foundation

for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Xie, Y. (2015) Dynamic documents with R and knitr. 2nd edition. Chapman and Hall/CRC.
Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. Springer.

https://www.r-project.org/

Ch. 2: Data analysis software: Excel and R

60

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemund, G.,
Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S., Müller, K.,
Ooms, J., Robinson, D., Seidel, D., Spinu, V., … Yutani, H. (2019). Welcome to the
tidyverse. Journal of Open Source Software, 4(43), 1686.

Wickham, H., & Grolemund, G. (2016). R for data science: Import, tidy, transform, visualize,
and model data. O’Reilly Media, Inc.

Winter, B. (2019). Statistics for linguists: An introduction using R. Routledge.

