
Chapter 11
Modeling categorical variables: Logistic regression

James Myers

2022/5/10

1. Introduction

 As we’ve seen, regression is a powerful technique, the secret heart of everything from t
tests to ANOVA and beyond, but so far all of the examples have involved continuous-valued
data that form a normal distribution (or can be transformed into a reasonably normal shape).
But as we’ve also seen, not all of the data that linguists care about are continuous or normally
distributed. Is there any way to apply the power of regression to categorical data, like the binary
responses we tested with the binomial test, or the counts we tested with chi-squared tests?
 Of course, but it took a long time to make it practical. Even though statistical methods
have been around for centuries, it wasn’t until the 1960s, when computers were increasing in
power, that researchers really figured out how to apply regression techniques to categorical
data. The trick was to think of the dependent variable in terms of a function that makes the
values a bit more linear, just enough so that the logic of linear regression can be generalized to
them. Thus was born generalized linear regression.
 By far the most common type of generalized linear regression is logistic regression
(named after its particular linearization function), which is used to analyze binary variables.
So if your dependent variable involves accuracy (correct vs. incorrect) or binary judgments
(acceptable vs. unacceptable) or the appearance of some sociolinguistic feature in a corpus
(present vs. absent) or any other such binary situation, and you want to predict whether the
probability of getting one or the other response depends on a bunch of independent variables
(whether they are categorical or continuous, interacting or not), then logistic regression is the
right tool for the job. In fact, if you’re a sociolinguist, you may have heard of a software system
called Varbrul (short for “variable rule”), which has logistic regression at its core.
 This makes generalized linear models much more flexible than methods like the binomial
test or chi-squared tests. With contingency tables, the independent variables also have to be
categorical (nominal), and we can only test one-way main effects, or two-way interactions, but
not both at the same time. We can’t test models involving continuous independent variables,
or more than two independent variables. But with a regression approach, we can do all of this.
 What if your dependent variable is categorical but not binary, with three or more levels?
No problem; you can use multinomial logistic regression. What if you want to analyze count
data, rather than binary data? You can use Poisson regression (which I already mentioned
early in this book). What if your dependent variable is ordinal (e.g., the levels are categorical

Ch. 11: Logistic regression

2

but are ordered)? There are regression techniques for that situation too. There is even something
called generalized additive modeling that can model data no matter how wiggly the best-fit
line ends up being. And there are categorical regression tools for special situations, including
word frequencies in a corpus.
 You can do all of this too - in R! From now on in this book, Excel becomes a lot less useful.
It may help with simple calculations or data organization when preparing a logistic regression,
but the regression itself has to be run in a real statistics program like R.

2. Why go logistic?

 In the old days before logistic regression, people dealing with binary data would often try
to treat it as normally distributed categorical data anyway, just so they could use ordinary linear
regression, maybe transforming ratios (e.g., accuracy rates) using tricks like the arcsine square
root transformation, which I briefly mentioned in an earlier chapter. But now that we have tools
like logistic regression, Warton and Hui (2011) are right to say that “arcsine is asinine”:
analyzing the binary data as binary data is the best way to go.
 To explain why, let’s start with a simple example involving a binary dependent variable,
and show how much better logistic regression does in analyzing it than ordinary linear
regression. Then we need to dive into the math of logistic regression, first explaining its strange
name. You might also wonder how this new categorical data analysis technique relates to our
old friend the chi-squared test; we’ll discuss that too. Then we need to face a bit of sad reality:
the power of logistic regression comes with a cost. Being the first major computer-dependent
statistical method, it is also the first one that can “crash”: you might not be able to build the
fancy model you want due to computational limitations. Finally, to help our monkey brains
understand what a logistic regression model is really telling us, we need to discuss how to plot
them, and how to estimate effect sizes.

2.1 Treating a binary response variable with respect

 Sally the sociolinguist notices that some Martians always pronounce the final consonant
of words, while other Martians always delete it. She also notices that the deletion seems to be
more common for richer Martians, so she calls this phenomenon “rich deletion”. To study it
more systematically, she collects the data from 100 Martians contained in the file
richdeletion.txt. In this file, each row represents one Martian, showing both that Martian’s
income in Martian dollars (Income) and whether the Martian is a deleting type of Martian
(Deletion = 1) or not (Deletion = 0).
 Here’s the data:

Ch. 11: Logistic regression

3

rd = read.delim("richdeletion.txt")
head(rd)

 Deletion Income

1 1 58900
2 1 87800
3 0 17800
4 0 47100
5 0 14100
6 0 9900

 Just to get a sense of the data, she makes a scatter plot (in this case, using the options()
function to change R’s default setting for scientific notation so it doesn’t turn the incomes into
stupid-looking values like 2e+04), producing Figure 1.

options(scipen=5) # Forces R to display 5-digit numbers
plot(Deletion ~ Income, data = rd) # Plot lets you use formula notation too!

Figure 1. The relation between Deletion and Income

 It looks like her hunch is on the right track: the higher a Martian’s income, the more likely
that Martian is to be a deleting Martian (with some overlap in the middle). But how can Sally
go beyond a simple scatter plot and build a statistical model?
 One thing Sally knows not to do in this case is to run an ordinary linear regression.
Because the dependent variable is numerical, R won’t stop her from doing it, but it’s easy to
see that it makes no sense here. This is what it would look like:

summary(lm(Deletion~Income, data = rd)) # Showing just the coefficients table below

Ch. 11: Logistic regression

4

Coefficients:
 Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.23859 0.047692 -5.003 2.49E-06 ***
Income 1.54E-05 9.14E-07 16.820 < 2e-16 ***

 If it’s not obvious to you why this analysis makes no sense, let’s add the line defined by
the above regression coefficients to the plot we just made, as shown in Figure 2:

abline(lm(Deletion~Income, data = rd)) # Assumes scatter plot is still open

Figure 2. The relation between Deletion and Income, with a linear best-fit line

 Do you see the problem now? The dependent variable is not continuous, but is always 0
or 1, with nothing between, and nothing above or below either. Doing a linear regression on
this kind of data is ridiculous, since the so-called “best-fit” line not only goes infinitely far
beyond both these two limits, but it doesn’t even get very close to most of the dots in the scatter
plot. It literally “misses the point(s)”!
 Fortunately, Sally knows that her data set is just the kind where she can use logistic
regression: her dependent variable is 0 vs. 1 and each data point is independent (from a different
Martian). She also know how to do logistic regression in R: with the function for generalized
linear models, called glm(). Since the logistic regression is designed for binary data, she
identifies which type of generalized linear model she wants by using an argument that identifies
which family of distribution she needs: the binomial distribution. You remember that
distribution family, right? It’s for binary data like flipping coins, or here, like deleting vs. not
deleting. So Sally runs her analysis like this:

rd.glm = glm(Deletion~Income, family = "binomial", data = rd)

Ch. 11: Logistic regression

5

 The quotation marks around the distribution family name are actually optional. But be
sure not to forget to include the family argument, since otherwise R will make glm() act exactly
like lm(), using the default value family = “gaussian”, i.e., with the normal distribution (named
after the German mathematician Carl Friedrich Gauss [1777-1855], who worked on it, though
as usual for things named after people, he wasn’t the first one to do so).
 As usual with R models, running glm() just creates a glm object, in this case Sally’s
logistic regression model. So she uses the summary() function to see what it tell us (if we don’t
need to use the model object for another purpose, we could do these two steps in one line):

summary(rd.glm)

Call:
glm(formula = Deletion ~ Income, family = “binomial”, data = rd)

Deviance Residuals:

Min 1Q Median 3Q Max
-1.505 -0.00294 -0.00002 0.00026 1.73345

Coefficients:
 Estimate Std. Error z value Pr(>|z|)

(Intercept) -25.6798 10.88789 -2.359 0.0183 *
Income 0.000554 0.000233 2.383 0.0172 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 137.186 on 99 degrees of freedom
Residual deviance: 12.564 on 98 degrees of freedom
AIC: 16.564

Number of Fisher Scoring iterations: 10

 I’ll explain the details of this report later, but for now just focus on the regression
coefficients table. It looks a lot like the one we got for the (invalid) ordinary linear model (with
some differences to be explained later), showing separate results for the intercept and for the
Income independent variable. Both of these effects are significant (p < .05). The coefficient for
Income is also positive, consistent with Sally’s intuition that deletion is more common for
richer Martians.
 The coefficient for the intercept is negative, though. Can you guess what that might mean?
Well, if the logistic regression model is trying to predict the probability of the Deletion value
being 0 or 1, the intercept here represents the deletion probability when we ignore Income
entirely. That is, it represents the default deletion rate. If deleting and non-deleting Martians

Ch. 11: Logistic regression

6

were equally common in the sample, this coefficient would be zero. So the fact that it’s negative
suggests that there are more non-deleters (0) than deleters (1). Is that true? Yes indeed, as we
can see using the xtabs() function:

xtabs(~Deletion, data = rd)

Deletion

0 1
56 44

 So there you go: logistic regression. Of course, there’s still a lot more to say. Like, how
does this work? What do all those other things mean in the report? How do we plot the results
properly (since Figure 2 is wrong)?

2.2 The math of logits

 Statisticians figured out very early that linear regression doesn’t make sense for a binary
dependent variable, and they knew that there three things they needed for a proper model of
binary data. Goal one is that the model should represent something meaningful about what
we’re trying to predict (the dependent variable). This means respecting binary data as binary.
Goal two is that the model should express the relationship between the dependent and
independent variables in a way that makes intuitive sense. This means thinking in terms of
probability, or at least something related to probability. Goal three is that the model should
handle the problem of how to fit infinitely long lines to a range restricted to the range 0 to 1.
 Since the binomial distribution turns into the normal distribution as the sample gets larger
(remember?), and since the mean of a bunch of 0s and 1s gives you a value that’s exactly the
same as the probability of getting a 1 (remember?), the very first attempt at regression analyses
for binary variables (way back in the 1930s) was based on probabilities. This old type of model
(which is still around) is called probit modeling. It handles goals one and two reasonably well,
but it doesn’t do a good job with goal three: probabilities, just like the raw data, are still stuck
between 0 and 1.
 In the 1960s, however, logistic regression was invented (though it took a little for it to
become mainstream, as we’ll see). By taking advantage of the increasing power of computers
(another theme we’ll see more of throughout the rest of this book), logistic regression was
finally able to achieve all three goals (Pampel, 2000, is a short overview book; Speelman, 2014,
is a short article reviewing its applications to corpus linguistics).
 Logistic regression transforms the dependent variable using the odds (勝算比、發生比)
rather than the probabilities. The odds of an event is the ratio of the probability of one outcome
(here, 1) to the probability the opposite outcome (0):

Ch. 11: Logistic regression

7

Deriving the odds from probabilities: P1/P0 = P1/(1-P1)

 Odds are used a lot in gambling. For example, you have 1:1 odds (pronounced “one to
one” in English) of getting a head when you flip a coin. The advantage here is that using odds
goes partway towards creating the infinite range we need for a linear model, since the
maximum odds value is infinity. That is, if P1 = 1, then P0 = 0, and 1/0 = ∞.
 To make the regression line infinite in both directions, we use our old friend the logarithm,
specifically, the natural logarithm (ln) based on that magic number e = 2.718282… (which R
computes using log() and Excel computes using =LN()). The log of infinity is still positive
infinity, but the log of 0 (the bottom of the odds ratio scale) is negative infinity:

log(Inf) # Yes, R lets you run computations on infinity!

[1] Inf

log(0)

[1] -Inf

 So now we have the log odds, or the logit, and hence the name of our new statistical
method, logistic regression:

Deriving the logit from probability: logit(𝑃𝑃1) = 𝑙𝑙𝑙𝑙 � 𝑃𝑃1
1−𝑃𝑃1

�

 You can compute log odds by writing the above formula in R, or by installing the gtools
package (Warnes et al., 2014). The function logit(Pr) turns the probability Pr into log odds Lo,
and the function inv.logit(Lo) turns the log odds back into probability. For example, if your
probability of getting 1 is .5, then the odds of getting 1 (instead of 0) is 1:1, or 1/1 = 1. Since
the natural log (ln) of 1 is the value of y that makes x = ey = 1, that means that y = ln 1 = 0
(because z0 = 1 no matter what z is).

library(gtools) # You have to install it first
logit(0.5)

[1] 0

inv.logit(0)

[1] 0.5

Ch. 11: Logistic regression

8

 As shown in the plot in Figure 3, the logistic function has an S shape (technically, a
sigmoid shape, named after the Greek letter for the /s/ sound, sigma, written Σ or σ... which
are not S-shaped ...). This shape will prove useful later.

curve(logit(x), 0, 1)

Figure 3. The S-shaped logistic function

 You actually don’t need the gtools package for this, since base R already has functions
that do the same thing, and in fact they’re in the familiar family of “p+distribution” for finding
the area to the left of a given point and “q+distribution” for finding the point given an area. So
if you rotated Figure 3 to put the logit(x) part on the bottom, you’d see the logistic distribution.

plogis(0) # Same as inv.logit(0) - try it, and other values too!
qlogis(0.5) # Same as logit(0.5) - ditto!

 Because log odds have an infinite range, they provide a way to express probability
information in a way that linear models can handle, even if you don’t want to do a full-fledged
logistic regression analysis. For example, Allerup and Elbro (1998) argue that if you want to
run an ANOVA comparing differences in accuracy across experimental conditions, it’s better
to use log odds than the raw proportions (though I’d say it’s even better just to run a logistic
regression, with help of the mixed-effects techniques that we’ll learn in the next chapter).
 The log odds transformation also deals with goal two, expressing the relationship between
the dependent and independent variables in a way that makes sense. To see this, think about
some situation where you want to predict the probability for a binary variable y that’s dependent
on two independent variables x1 and x2. If those two independent variables are also independent
of each other, then we can go back to basic probability theory and remember the multiplication

Ch. 11: Logistic regression

9

rule. That rules says that the probability of y should depend on the product of x1 and x2, just as
the probability of choosing K♥ from a deck of cards (1/52) is the same as the probability of
choosing K (1/13) times the probability of choosing ♥ (1/4).
 But since this is regression, we also have an intercept; we also need to use odds instead of
probability. And let’s do one more thing: instead of representing the intercept, x1, and x2 in
terms of their raw coefficients (b0, b1, b2), let’s use the exponential function (exp() in R), that
is, raise e to the power of those values. We still multiply them together because of the
multiplication rule, though. That gives us this:

Part way to logistic regression: 𝑃𝑃1
1−𝑃𝑃1

= (𝑒𝑒𝑏𝑏0) ∙ (𝑒𝑒𝑏𝑏1𝑥𝑥1) ∙ (𝑒𝑒𝑏𝑏2𝑥𝑥2)

 Now let’s take the natural logarithm (base e) of both sides. Not only does this convert the
dependent variable into the logit, but even more amazingly, it also turns the rest of the equation
into a linear equation (because log() is the inverse of exp(), and adding logarithms is the same
as multiplying the original values):

Logistic regression: 𝑙𝑙𝑙𝑙 � 𝑃𝑃1
1−𝑃𝑃1

� = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥1 + 𝑏𝑏2𝑥𝑥2

 That’s why logistic regression is a generalized linear model. In essence, by using the logit
as a link function, it becomes possible to analyze binary data in a linear way. Moreover, as
we’ve already seen, the relevant distribution for computing the p values is the binomial family,
which is why you tell R to perform logistic regression by putting the family = "binomial"
argument in the glm() function.

2.3 Logistic regression and chi-square

 How does R compute the coefficients for the logistic regression model, and how is this
related to the other categorical data analyses methods we know, like the binomial test and the
chi-squared test?
 If this were ordinary linear regression, R could just plug in our data (as a big matrix) and
then compute the slope with a fixed formula. For example, if we observe the (x, y) pairs (1, 10)
and (2, 20), what is the most likely slope (coefficient for x)? Well, it should be 10 (since y =
10x). This is derived from a formula generalized from the familiar formula for a line’s slope
that you learned in algebra class: (y2-y1)/(x2-x1). The reason why mathematicians are sure that
their formula is the optimal one is because of calculus (微積分學), which was used hundreds
of years ago to find the optimal values for functions with certain well-defined properties. In
the case of finding the best-fitting line in scatter plot, calculus was applied to least-squares

Ch. 11: Logistic regression

10

estimation to find the line that minimizes the (squared) distances from the line of each data
point. R already knows the slope formula, so it doesn’t need to do any calculus or any other
hard work.
 Due to the logistic transformation, however, it turns out that we can’t estimate the model
coefficients using least-squares estimation. Fortunately, the more general theory of maximum
likelihood estimation still applies. This is the idea that the coefficients of the regression model
should be the ones most likely to generate the observed data. So to find the coefficients in
logistic regression, we (or rather, our computer programs) have to use an estimation algorithm,
where we start with an initial guess, check the model fit (by seeing what likelihood it gives),
adjust the guess slightly, check the model fit again to see if it’s better, and so on, until any more
changes don’t make any noticeable improvement, or until we stop looping (since we don’t want
to get caught in an infinite loop if there’s no good answer). The number of loops R makes while
running glm() is given in the text report as “Number of Fisher Scoring iterations”, so in the
analysis of richdeletion.txt above, the report said it iterated 10 times before finally converging
on the best-fitting model. (Yes, it’s the famous Fisher again! He died before logistic regression
became practical, but he had his hand in developing some aspects of the math, just as with most
other kinds of statistics.)
 The need for such algorithms makes logistic regression dependent on computers, which
is why it wasn’t practical until the 1960s. It also makes it prone to “crash”: sometimes the
estimation algorithm can’t find any coefficients, and sometimes it gives inaccurate coefficients
(because the algorithm stops too early). Fortunately, there are ways to check for dangers like
this, and R will also often give you a warning.

2.3.1 Comparing logistic regression against other categorical tests

 To get these basic concepts clear, let’s start with the simplest possible regression model,
namely one with only an intercept, like y~1 (remember?). The intercept in a logistic regression
model tests whether the overall probability for response = 1 is significantly higher than the
probability for response = 0, ignoring all of the independent variables.
 If you think about this, you’ll realize that this is exactly like the one-way chi-square test
comparing two category sizes (here, the 1 vs. 0 categories), or like the binomial test. Let’s
analyze the same data three ways to see how the results differ.
 So ... while doing fieldwork on Mars, you’re trying to figure out a puzzle about the suffix
-qfx. This appears about equally often across the hundreds of nouns in the dictionary you’re
compiling, with one curious exception: it seems to appear slightly more often than not on the
30 Martian words relating to cheese (Martians love cheese). Specifically, -qfx appears on 20 of
the cheese nouns but not on the 10 other cheese nouns. Is this a significant asymmetry, or is
the preference of -qfx for cheese just chance?

Ch. 11: Logistic regression

11

cheese = c(rep(1,20),rep(0,10)) # 20 1's and 10 0's
sum(cheese==0); sum(cheese==1) # Yup

 The binomial test gives the exact probability of the null hypothesis that -qfx has no
preference for cheese, just missing significance:

two-tailed p = 0.09873715 (not quite significant!)
2*pbinom(min(sum(cheese==0),sum(cheese==1)), length(cheese), 0.5)

 Now let’s run a one-way chi-squared test, as an asymptotic estimate of the above (by the
way, note how I count the number of 0s and 1s using xtabs()). It just misses significance.

chisq.test(xtabs(~cheese)) # X-squared = 3.3333, df = 1, p-value = 0.06789

 To test the intercept-only model using logistic regression, we create the model with glm(),
and then put this inside summary() to get the coefficients table, like so:

cheese.glm = glm(cheese~1, family="binomial") # The quotes are actually optional
summary(cheese.glm) # p = .0735: not significant again

Call:
glm(formula = cheese ~ 1, family = “binomial”)

Deviance Residuals:

Min 1Q Median 3Q Max
-1.4823 -1.4823 0.9005 0.9005 0.9005

Coefficients:

 Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.6931 0.3873 1.79 0.0735

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 38.191 on 29 degrees of freedom
Residual deviance: 38.191 on 29 degrees of freedom
AIC: 40.191

Number of Fisher Scoring iterations: 4

 So all three analyses give sort of similar results, though in this case, the exact binomial
test is the most reliable, since this is such a small sample; the other two tests are asymptotic
models, and so they work better in larger sample sizes.

Ch. 11: Logistic regression

12

2.3.2 Deeper links between logistic regression and the chi-squared distribution

 R’s text report for the logistic regression also mentions the residual deviance. Deviance
is just a measure of how different two frequencies are. For example, in a chi-squared test, the
test statistic χ2 represents the total deviance, or the sum of all of the deviances for the expected
and observed frequencies (which we want to be as big as possible, since the expected
frequencies represent the null hypothesis). In a logistic regression, the residual deviance
represents the deviance of your model compared with the observations. Thus unlike R2 for
ordinary linear regression, we want this measure of model fit to be as small as possible, since
our model is supposed to fit our observations.
 The residual deviance is related to the log likelihood (LL) of our model, in terms of the
following formula:

Deviance = -2LL

 Remember that likelihood here is the probability that our model is true given our data.
Why do we use log likelihood? Because as a kind of probability, likelihood is also restricted to
lie between 0 and 1, and the log makes it infinite at one end. Why do we multiply by -2? In
part because ln(1) = 0 and ln(0) = -∞, making worse fits negative, so multiplying by a negative
number makes larger positive numbers imply a worse fit. In particular, if our model is a perfect
fit, -2LL = 0 (no deviance); if our model isn’t a perfect fit, -2LL > 0. But why -2 specifically?
Because this measure relates to information theory, and a binary contrast (2) is the smallest
unit of information (i.e., 1 only means something in contrast to 0).
 We can see that the deviance and log likelihood values are related for the cheese.glm
model by extracting them like so:

LL = logLik(cheese.glm); LL

‘log Lik.’ -19.09543 (df=1)

summary(cheese.glm)$deviance

[1] 38.19085

as.numeric(-2*LL) # Same as deviance

[1] 38.19085

 In order to compute a logistic regression, programs like R are actually trying to maximize
the log likelihood (and thus reduce the residual deviance), adjusting the coefficients each time
it loops through the data until adjusting them doesn’t make log likelihood any larger.

Ch. 11: Logistic regression

13

 To get a sense of how this is computed, first look at the estimate for the intercept
coefficient in the logistic regression: it’s just the log odds associated with the probability that
the output is 1:

mean(cheese) # The probability of cheese == 1

[1] 0.6666667

coef.int = summary(cheese.glm)$coefficients[,"Estimate"] # intercept coefficient only
coef.int

[1] 0.6931472

inv.logit(coef.int) # Turn log odds back into probability (in gtools package)

[1] 0.6666667

 The p value shown in the logistic regression table comes from a two-tailed one-sample z
test on the z value shown in the table:

summary(cheese.glm)$coefficients[,"Pr(>|z|)"] # Just the p value

[1] 0.07350237

logit.z = summary(cheese.glm)$coefficients[,"z value"] # Just z
2*pnorm(-abs(logit.z))

[1] 0.07350237

 So where does this z value come from? Like the t value in ordinary (linear) regression, it
is just the estimated coefficient divided by the standard error:

𝑧𝑧 = 𝐵𝐵
𝑆𝑆𝑆𝑆

 for the coefficient B

logit.z

[1] 1.789699

logit.SE = summary(cheese.glm)$coefficients[,"Std. Error"] # Just standard error
coef.int/logit.SE

[1] 1.789699

Ch. 11: Logistic regression

14

 The test R that uses to compute the z value is called the Wald test (named after Hungarian
mathematician Abraham Wald [1902-1950]), which takes advantage of the relationship
between the normal distribution and the chi-squared distribution (I mentioned this relationship
in the chapter on chi-squared test). In the case of the Wald test, the crucial relationship looks
like this (for df = 1):

𝜒𝜒2 ≈ 𝐵𝐵2

𝑆𝑆𝑆𝑆2
 for the coefficient B

 You can confirm this yourself:

chisq.test(c(10,20))$statistic # Just the chi-squared value of the chi-squared test

X-squared
 3.333333

logit.z^2

[1] 3.203021

 But why are we back to the stupid old z test? Didn’t we learn that it makes unjustified
assumptions about the population, which is why we started using the t test instead? Indeed,
something funny is going on. While it’s reasonable to test the usual null hypothesis that the
population mean (here, coefficient) is zero, we don’t actually know the population standard
deviation, and this makes our standard error unreliable. Moreover, when the coefficient is large,
the Wald test tends to make the standard error large as well, making their ratio (which gives z)
less reliable as well.
 So not only is logistic regression an asymptotic method, but it’s one that relies on the z
test (no df involved). That means that if you’re going to do a logistic regression, it’s best to use
as large a sample as you can. A common rule of thumb (that also applies to ordinary linear
regression) is to have at least 10 data points per predictor. Another, stricter, common rule of
thumb is to have at least 100 data points (assuming you only have a small number of predictors,
i.e., many fewer than 10).

2.3.3 Testing significance with likelihood ratios

 Worries over the reliability of the Wald test has led to the search for alternative ways to
compute the p values in a logistic regression. One of these is the same one we saw with ordinary
linear regression, and though it is also an asymptotic method, it can be more stable than the

Ch. 11: Logistic regression

15

Wald test. This involves running a likelihood ratio test, comparing our model with one that’s
missing the parameter that we want to test.
 Recall that for linear models, we used R’s anova() function, and computed a kind of
analysis of variance. For generalized linear models, we use exactly the same function, but tell
it to run a chi-squared test comparing the model fits, using the argument test = "Chisq" (we
have to capitalize the “C”; don’t ask me why). So this time, the likelihood ratio that R computes
here with anova() is actually a so-called analysis of deviance.
 Here’s how to use this approach to test the intercept in the intercept-only logistic
regression model cheese.glm. The formula expressed as y ~ 1 is actually not the simplest
possible regression; even simpler is y ~ 0, which predicts y from nothing! Does our intercept
model do better than this no-intercept model?

cheese.glm0 = glm(cheese~0, family="binomial")
anova(cheese.glm0, cheese.glm, test="Chisq")

Analysis of Deviance Table

Model 1: cheese ~ 0
Model 2: cheese ~ 1
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 30 41.589

2 29 38.191 1 3.398 0.06528 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

 We can report the results we get as χ2(1) = 3.398, p > .05. And look at that p value: p
= .06528 is very close to the p = .06789 we got with the chi-squared test, showing once again
the relationship between this old method and our fancy new logistic regression.
 So far I’ve demonstrated four different ways to test exactly the same null hypothesis. The
exact binomial test is the most reliable here, since the p value is based directly on probabilities
from the observations. We can then compare this with the other three tests as in Table 1.

Table 1. Four ways to test Martian cheese

Method p value
binomial test .099
Wald test .073
chi-squared test .068
analysis of deviance .065

Ch. 11: Logistic regression

16

 Of course, in real life, you usually don’t have much choice over which test to use. In
Sally’s rich deletion data set, for example, we’re predicting deletion from income, a numerical
variable, instead of just modeling the intercept. This makes the binomial and chi-squared tests
irrelevant, since they only work with simple categorical independent variables. Our only real
choice, then, would be logistic regression (with p values computed using the default Wald test,
or via model comparison and analysis of deviance).

2.4 The problem of convergence

 Suppose you look at those 30 Martian cheese nouns again and you notice something
amazing: the -qfx suffix seems to be rarer in higher-frequency cheese words. You also suspect
that maybe word length (in number of syllables) affects the probability of using the -qfx suffix
too. Let’s first create the fake data, but use column labels so we can run a full-fledged
regression:

Suffixed = c(rep(1,20),rep(0,10)) # Dependent variable
Frequency = 1:30

 Notice that by putting all the Suffixed words first in the list, we get a strong negative
correlation between the variables Suffixed and Frequency. By the way, you might remember
that this kind of correlation (between a vector of 0s and 1s and a numerical vector) is identical
to an unpaired t test (try it: you should get r = -.82).

cor.test(Suffixed,Frequency) # This is just an unpaired t test, remember?

 Now let’s fake some word lengths, choosing them totally randomly using the sample()
function (I first use set.seed(1) to make sure you and I get the same fake values):

set.seed(1) # So we get the same fake values
WordLength = sample(1:30)

 Let’s run a logistic regression on these exciting “facts”, to see what predicts the
probability (actually, log odds) of showing a suffix. Based on how we faked the data, we expect
there to be a strong negative effect of Frequency on Suffixed, but no effect of WordLength.

cheese2.glm = glm(Suffixed ~ Frequency + WordLength, family = binomial)

Warning messages:
1: glm.fit: algorithm did not converge
2: glm.fit: fitted probabilities numerically 0 or 1 occurred

Ch. 11: Logistic regression

17

 This is a bad sign: R gives us two warnings. The first says that the model didn’t converge
(i.e., the algorithm failed to find a stable model before running out of loops), and the second
says that the fitted probabilities were at the minimum or maximum values (0 or 1).
 Oh well, a warning is just a warning, not a fatal error. Let’s see what our model looks like
anyway:

summary(cheese2.glm)

Call:
glm(formula = Suffixed ~ Frequency + WordLength, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.000078088 -0.000000021 0.000000021 0.000000021 0.000074086

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 755.688 302590.587 0.002 0.998

Frequency -33.014 13296.782 -0.002 0.998

WordLength -6.309 5417.085 -0.001 0.999

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 38.190850097689 on 29 degrees of freedom
Residual deviance: 0.000000011877 on 27 degrees of freedom
AIC: 6

Number of Fisher Scoring iterations: 25

 What? That doesn’t make any sense. All of the p values are basically 1. This is not crazy
in the case of WordLength, which is a totally random variable, but why is the intercept p value
so far above .05, when in our intercept-only model it was pretty close to .05? And why on earth
is the p value for Frequency so close to 1, when the correlation between Suffixed and Frequency
was intentionally made so strong?
 But it’s not just the p values that are wrong: look at those crazy coefficients! In the
intercept-only model, the intercept coefficient was 0.6931, which as we saw, was just the log
odds for the probability of getting a suffixed word in this set (20/30). But now we get the totally
ridiculous and impossible coefficient of 755.688! Moreover, the residual deviance is virtually
zero, and R looped 25 times (as shown in the last line of the report), which is the default
maximum (you can change it using the control argument; check ?glm.control for details).
 So the algorithm crashed. Why? Bizarrely, it’s because the correlation between Frequency
and Suffixed is too good: the optimization algorithm used by logistic regression cannot handle
a perfect fit! Indeed, in our fake data, Frequency predicts Suffixed perfectly: Suffixed = 1 when

Ch. 11: Logistic regression

18

Frequency < 20, and Suffixed = 0 when Frequency > 20 (technically, this situation is called
complete separation):

max(Frequency[Suffixed==1]) # 20
min(Frequency[Suffixed==0]) # 21

 For a large enough real data set, this situation is not extremely common, since real life is
kind of messy. But if it happens to you, there are a number of responses you could take to this
problem. The simplest would be to say that no statistical analysis is really necessary here: if
the sample size isn’t tiny, complete separation of your output variable is itself a good argument
that your model is describing a real pattern. If your thesis director or journal reviewer do not
agree with such a reasonable response, you could see if you could use valid linguistic reasons
to change your choice of independent variables, or to transform some of them. You could also
try studying more technical solutions like some form of “penalized” regression, where the
model adds a noisy variable (relevant functions are available in the R packages glmnet
[Friedman et al., 2017] and logistf [Heinze et al., 2017]).
 But to keep the chapter from getting too long, let’s finish this example by adding a little
bit of noise to the data ourselves, for example by moving one of the 1s from the start of Suffixed
to the end, so now there’s one low-frequency word that’s suffixed, creating the even more fake
vector Suffixed.f. Now we get no warning, and a reasonable-looking model:

Suffixed.f = c(Suffixed[2:30],Suffixed[1])
cheese3.glm = glm(Suffixed.f ~ Frequency + WordLength, family = binomial)
summary(cheese3.glm)

Call:
glm(formula = Suffixed.f ~ Frequency + WordLength, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max
-1.23479 -0.40883 0.07562 0.27547 2.73506

Coefficients:

 Estimate Std. Error z value Pr(>|z|)
(Intercept) 7.74575 3.32075 2.333 0.01967 *
Frequency -0.39387 0.14973 -2.63 0.00853 **
WordLength 0.02213 0.08701 0.254 0.79925

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 38.191 on 29 degrees of freedom

Ch. 11: Logistic regression

19

Residual deviance: 16.032 on 27 degrees of freedom
AIC: 22.032

Number of Fisher Scoring iterations: 6

 Now the intercept has a significant positive effect as it should, since there are more 1s
than 0s. Frequency has a significant negative effect, since higher frequency means fewer 1s.
WordLength has no significant effect, since it’s random.
 The only problem is that the coefficient for the intercept is still too high (remember that
in reality it should be 0.6931), because our sample size is still too small to get completely
reliable results. We can get a hint that our model is not perfect by looking at another part of
R’s text report, namely the deviance residuals. As in ordinary linear regression, these should
be normally distributed (and thus symmetrically distributed) around 0, but you can see that the
minimum (-1.23479) and maximum (2.73506) are not mirror images of each other: the
distribution is not symmetrical.
 Another clue that we may need to check our model more carefully is suggested at the end
of the report, where we are told that the “Dispersion parameter for binomial family taken to be
1”. Dispersion reflects an assumption about the variability in our data that’s made by logistic
regression, namely that the ratio of 0s and 1s will be consistent with an actual binomial
distribution, and not some other type of distribution. If there’s less variation in the data than
the model assumes (i.e., less than 1), that’s called underdispersion, and if there’s more, that’s
overdispersion (which is the more common situation with real data)..
 Should we worry about this? People generally don’t, just as they don’t worry too much
about other technical assumptions about statistical tests (and we’ve already seen a lot of those
throughout this book). If you’re worried anyway, the easiest way to test if the dispersion
assumption is valid for your data is is to use the testDispersion() function in the DHARMa
package (Hartig, 2022; the name stands for “Diagnostics for Hierarchical (Multi-Level / Mixed)
Regression Models”, where the terms “hierarchical”, “multi-level”, and “mixed” will be
explained in the next chapter). It works by resampling new (fake) samples to see how weird
the real data are.

library(DHARMa) # You have to install it first (it comes with lots of stuff)
testDispersion(cheese3.glm, plot = F) # Default plot = T shows fake sample histogram

 DHARMa nonparametric dispersion test via sd of residuals fitted vs. simulated

data: simulationOutput
dispersion = 0.85633, p-value = 0.792
alternative hypothesis: two.sided

Ch. 11: Logistic regression

20

 So in this case we’re just fine: with p > .7, we can safely assume that our data shows the
expected levels of dispersion, even though the actual dispersion value (0.86) isn’t exactly 1.
 Finally, notice that the glm() report also includes AIC, that universal measure of model
fit, the Akaike Information Criterion. Remember that the better the fit, the smaller this
number should be. The number here, 22.032, is above zero, which means it’s not as small as
an ideal model would be (since AIC values can be negative, and it’s the lowness that matters,
not the magnitude).

2.5 Plotting a logistic regression

 Since we plotted Sally’s rich deletion data incorrectly before, let’s do it again, properly
this time. Here’s her data and model if you lost them:

rd = read.delim("richdeletion.txt")
rd.glm = glm(Deletion~Income, family = "binomial", data = rd)

 One way to plot logistic regression is to show the raw 0s and 1s for the dependent variable,
as we did before, but instead of adding a linear fit line, we use the sigmoid curve from our
logistic regression model. We can do this with the predict() function that we used before with
linear regression. The only new thing here is that for glm models, predict() uses the canonical
(default) link function by default for whichever generalized linear model you specific via the
family argument; when you set family=binomial, it predicts the logit values by default. So if
we want to predict the original 0 vs. 1 response values, we have to set type="response"
(see ?predict.glm for more info).
 Here’s how I did this to make Figure 4. The most annoying parts of the code below are
caused by the fickle curve() function. The predict() function needs a data frame to predict
from, but the curve() function needs to treat these variables as a continuous input x value so it
can plot the corresponding y values in the curve. The result is the weird use of
data.frame(Income = x), which in turn forces us to use attach(rd) first so Income is in the
general memory for the benefit of curve(). We also need the add=TRUE argument, since by
default curve() creates new plots instead of adding lines to existing plots.

attach(rd) # Pleases the fickle curve() function
options(scipen=5) # Forces R to display 5-digit numbers
plot(Deletion ~ Income)
curve(predict(rd.glm, data.frame(Income = x), type="response"), add=T)
detach(rd) # Always do this as soon as you're done

Ch. 11: Logistic regression

21

Figure 4. A sigmoid logistic fit to our raw 0s and 1s

 How should we interpret such a sigmoid logistic fit line? Well, the “intercept” is indicated
by the position of the rising part of the curve along the x-axis; here it’s about in the middle,
since Deletion = 0 and Deletion = 1 have almost the same frequency. The “slope” is indicated
by the slope of this rising part: it’s going up, so here it’s positive.
 However, this kind of plot has some important disadvantages. First, the dots tend to
overlap, so it’s often hard to tell where they cluster. For example, if there is more than one data
point with the same x and y values (not uncommon, since y can only be 0 or 1), all those dots
will overlap: one isolated dot looks exactly the same as a lot of dots all at the same point.
Second, the dots always appear at only two places along the y-axis, so we don’t get a clear
sense of how the probabilities actually change as a function of x. Third, the sigmoid fit line
doesn’t show the model’s intercept and slope directly.
 An alternative that solves the first two problems is to convert the y-axis values to
probabilities for several bins along the x-axis. These probabilities represent what the sigmoid
curve is ultimately trying to fit. So here’s how to create Figure 5 (note the change in the y-axis
label, since we’re now plotting rates or probabilities, not raw data):

attach(rd)
bins = cut(Income,10) # Creates factor defining 10 equal-sized bins for x
meanx = tapply(Income, bins, mean) # Computes mean for each bin
proby = tapply(Deletion, bins, mean) # Mean of 0s & 1s is probability, remember?
options(scipen=5) # Sorry, we have to do this again...
plot(meanx, proby, ylab = "Deletion rate", xlab = "Income")
curve(predict(rd.glm, data.frame(Income=x), type="resp"), add=T)
detach(rd)

Ch. 11: Logistic regression

22

Figure 5. A sigmoid fit to probabilities

 Another alternative that solves all three problems (but creates new problems of its own)
is to convert the y-axis values into log odds (logits) for several bins along the x-axis. Now we
can plot the fit line using ordinary linear regression, since we’re applying the canonical link
function directly in the graph. But by using log odds on the y-axis, we’ve lost an intuitive
picture of the original probabilities. Computing logits for some bins may also require fudging
the data a bit, since if any bin has no cases of y = 0 or y = 1, then P0 or P1 will be zero, making
ln(P1/P0) impossible to plot (∞ if P0 = 0 or -∞ if P1 = 0). So in the R code I used to create
Figure 6, I had to add some noise.

attach(rd)
bins = cut(Income, 10)
tapply needs a one-argument logit function for vectors:
logit.bin = function(vector) {
 prob1 = mean(c(vector,0,1)) # Add noise: two extra values
 prob0 = 1-prob1 # probability of y = 0 in bin
 log.odds = log(prob1/prob0) # So neither prob should be 0
 return(log.odds)
}
meanx = tapply(Income, bins, mean) # Computes mean for each bin
logity = tapply(Deletion, bins, logit.bin)
plot(meanx, logity, ylab = "Deletion (log odds)", xlab = "Income")
abline(lm(logity ~ meanx)) # Ordinary linear regression to fit to log odds
detach(rd)

Ch. 11: Logistic regression

23

Figure 6. A linear fit to log odds

 You don’t have to do all this work by hand. The effects package essentially does a
combination of the last two options: as shown in Figure 7, it plots a linear fit to the log odds,
but it rescales the y-axis to display the probabilities (resulting in y-axis numbers that are not
evenly spaced).

library(effects)
plot(allEffects(rd.glm))

Figure 7. A linear fit to log odds, rescaled to probabilities

Ch. 11: Logistic regression

24

 Note that the plot created with the effects package also surrounds the best-fit line with a
gray envelope representing the 95% confidence band (this package performs the same service
when plotting ordinary linear regression, yet another interesting thing that we had to leave out
of our over-long multiple regression chapter). Notice that the band here does not show an
identical distribution of variability all across the data set. which seems consistent with how the
binned probabilities are scattered in Figure 6 as well. In particular, the model is more reliable
in the middle range of values (where the confidence band is thinner). This is typical for logistic
regression; indeed, as we saw, the whole algorithm crashes when our data set is too extreme
(perfect).

2.6 Effect sizes for logistic regression

 As we’ve seen, the overall fit of a logistic regression model can be expressed with residual
deviance and AIC. Another way is to attempt to mimic the coefficient of determination R2
that we can easily compute for ordinary linear regression. We can’t use exactly the same
method to compute this for logistic regression, since now the dependent variable of 0s and 1s
isn’t a “really” a numerical vector, but we can do something similar. Menard (2000) suggests
computing what he calls RL

2, based on the log likelihood of our full model as compared with
an intercept-only model. Namely, you compute RL

2 as the ratio of the difference in log
likelihoods for the empty model LLempty and the full model LLfull, divided by the empty model:

A kind of coefficient of determination: 𝑅𝑅𝐿𝐿2 = 𝐿𝐿𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐿𝐿𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 It’s easy to compute this formula in R, using the logLik() function again (below I put it
inside the as.numeric() function to get rid of the text that logLik() adds). The value we get
implies that about 61% of the variability in the responses is explained by our model.

cheese0.glm = glm(Suffixed.f ~ 1, family = "binomial")
as.numeric((logLik(cheese0.glm)-logLik(cheese3.glm))/logLik(cheese0.glm))

[1] 0.5802248

 If you want, you could also compute RL

2 from the summary(glm(...)) object. Remember
that the text report given by this command shows the residual deviance, which is the log
likelihood for the full model divided by -2. The report also shows the null deviance, which is
the same as for the intercept-only model (which is why the two values are identical for the first
cheese analysis we did, back in section 2.3). Thus we can also compute RL

2 like so:

Ch. 11: Logistic regression

25

cheese3.LL = -2*summary((cheese3.glm))$deviance
cheese0.LL = -2* summary((cheese3.glm))$null.deviance
(cheese0.LL- cheese3.LL)/cheese0.LL

[1] 0.5802248

 How do we quantify the effect sizes for the individual independent variables? One simple
way is to adapt the method we used for ordinary linear regression, and compute something
similar to standardized coefficients. Remember that for ordinary linear regression, we can do
this by multiplying each predictor’s coefficient by the ratio of that predictor’s standard
deviation divided by the standard deviation of the independent variable:

Standardized coefficients for ordinary linear regression: 𝛽𝛽𝑖𝑖 = 𝑏𝑏𝑖𝑖 �
𝑠𝑠𝑥𝑥𝑖𝑖
𝑠𝑠𝑦𝑦
�

 Remember also that we could get the exact same results by first converting all of our
variables, including the dependent variable, into z scores, and then running the linear regression
on these z scores.
 However, neither method works perfectly for logistic regression, since now the model is
dealing with log odds, not the raw dependent variable of 0s and 1s. Indeed, if you try to compute
the standard deviation for logit(Y) (where Y is your vector of 0s and 1s), you get nonsense,
since by definition, logit(0) = -∞ and logit(1) = +∞.
 The easiest way around this problem is to “standardize” only the independent variables,
by converting them to z scores before running the regression. This will allow you to compare
effect sizes within a model, but not necessarily between models, since this method doesn’t take
the variance of the dependent variable into account. In fact, this variance will change as you
add or remove predictors from your model (which is part of the reason why the intercept
coefficient changed so much when we went beyond our intercept-only analysis of the Martian
cheese data). It’s still a pretty commonly used approach, however (see, e.g., Myers, 2016).
 Let’s try it on the slightly-noisy Martian cheese data (predicting Suffixed.f from
Frequency and WordLength). As when we used this trick with ordinary linear regression, the
p values come out exactly the same as before, but now we get the (sort of) standardized
coefficients of βFrequency = -3.4674 and βWordLength = 0.1948 (try it!).

cheese3.z.glm = glm(Suffixed.f ~ scale(Frequency) + scale(WordLength),
 family = "binomial")
summary(cheese3.z.glm)

Ch. 11: Logistic regression

26

 Also like ordinary linear regression, we can test if the two coefficients are significantly
different using a likelihood ratio test comparing the full model with one where the predictors
are literally summed (with I()). Unsurprisingly, they’re indeed significantly different (try it!):

cheese3.z.same.glm = glm(Suffixed.f ~ I(scale(Frequency) + scale(WordLength)),
 family=binomial)
anova(cheese3.z.same.glm, cheese3.z.glm, test="Chisq")

 If you want to try to take the dependent variable into account too, Menard (2004) suggests
a method that estimates the “observed” logits (which you can’t literally observe, since they’re
-∞ and +∞, as just explained) using the predicted logits, which predict(glm(...)) can give you
(by keeping the default argument type="link"). His method also exploits the fact that the
formula for computing standardized coefficients β in ordinary linear regression is related to the
formula for the coefficient of determination R2. As we saw above, the same author suggests
using RL

2 as the logistic regression equivalent of R2. All of this reasoning leads to him suggest
the following formula, where RL is the square root of RL

2, and slogit(ŷ) is the standard deviation
of the logits predicted by your model.

Menard’s standardized coefficients for logistic regression: 𝛽𝛽𝑖𝑖 = 𝑏𝑏𝑖𝑖𝑅𝑅𝐿𝐿 �
𝑠𝑠𝑥𝑥𝑖𝑖

𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦�)
�

 To apply this formula to standardize the coefficients in cheese3.glm (created with the raw
variables, not the z scores), we can use the following code. It gives very different values from
the simpler method above, but the difference in effect size for the two variables is still in the
same direction (i.e., the magnitude of the Frequency effect is much greater than that for the
WordlLength effect), and the ratio of the two standardized coefficients is the same using either
method:

Frequency.coef = summary(cheese3.glm)$coefficients["Frequency","Estimate"]
WordLength.coef = summary(cheese3.glm)$coefficients["WordLength","Estimate"]
RL = sqrt(as.numeric((logLik(cheese0.glm)-logLik(cheese3.glm))/logLik(cheese0.glm)))
Frequency.sd = sd(Frequency)
WordLength.sd = sd(WordLength)
logit.yhat.sd = sd(predict(cheese3.glm)) # logits, not prob (type = "link" by default)
Frequency.beta = Frequency.coef * RL * (Frequency.sd/logit.yhat.sd)
WordLength.beta = WordLength.coef * RL * (WordLength.sd/logit.yhat.sd)
Frequency.beta; WordLength.beta

[1] -0.7674511
[1] 0.04311755

Ch. 11: Logistic regression

27

3. Extending logistic regression

 Just as with ordinary linear regression, there’s a lot more to say about logistic regression.
Some of it involves things we’ve already seen with ordinary linear regression. For example,
when running a logistic regression, you should still test for collinearity and try to deal with it
if you find it. You may also want to try doing a stepwise regression, since the step() function
works just as well for glm objects as for lm objects (though I don’t recommend it, for the
reasons I mentioned in the previous chapter). Your independent variables can also include
multi-level categorical factors, encoded using dummy coding or effect coding. You can also
test for interactions among the independent variables. It is also possible to handle repeated-
measures data.
 Here I’ll address just one of these old issues, namely working with repeated-measures
data. The rest of this section then turns to new issues, namely: multinomial logistic regression
(when your dependent variable involves more than two categories) and Varbrul (which can do
a variety of logistic regression methods, albeit in a rather non-standard format).

3.1 Repeated-measures logistic regression

 Like ordinary linear regression or chi-squared tests, a logistic regression model assumes
that each data point is independent of all of the others. However, the logic we used earlier for
repeated measures (linear) regression can also be applied in repeated-measures logistic
regression. Similar to the previous chapter, all we have to do is run a logistic regression on
each unit (e.g., each participant in an experiment, or each speaker in a sociolinguistic database),
and then run one-sample t tests on the coefficients across the units. This works because logistic
regression coefficients, just like coefficients in ordinary linear regression, tend to be normally
distributed (Pampel, 2000).
 Let’s see how this works, since in the next chapter we’ll compare the results with mixed-
effects logistic regression, which is a better way to analyze the same kind of data.
 The data in demo.txt are the results of a real syntax experiment (for similar experiments,
see Myers, 2009, 2012a), where seven Mandarin speakers were each given 20 sentences to
judge as good (Judgment = 1) or bad (Judgment = 0). The sentences came in sets of four that
were matched as much as possible, except for two factors: ComplexNP (1 = complex noun
phrase, -1 = simple noun phrase) and Topic (1 = element extracted from the noun phrase to
topic position, -1 = no extraction). Our main interest is testing whether there is an interaction
between ComplexNP and Topic, which could mean that it’s ungrammatical to extract topics
from complex noun phrases.
 First, here’s the data:

Ch. 11: Logistic regression

28

demo.dat = read.delim("demo.txt")
head(demo.dat)

 Speaker Item Set Order ComplexNP Topic Judgment

1 1 18 5 1 1 -1 1
2 1 5 2 2 1 1 1
3 1 20 5 3 -1 -1 1
4 1 19 5 4 -1 1 1
5 1 4 1 5 -1 -1 1
6 1 2 1 6 1 -1 1

 Note that I’ve already used effect coding in the data frame, which makes the interaction
(if it exists) easier to interpret (it also makes the effects package annoying to use for plotting,
but we won’t be plotting anything).
 So let’s write some R code to create a logistic regression model on each speaker; this is
basically the same code we used in the previous chapter to run repeated-measures regression,
but modified for logistic regression.

CNP.coef = numeric(7) # Will hold ComplexNP coefficients across participants
Top.coef = numeric(7) # Will hold Topic coefficients across participants
CxT.coef = numeric(7) # Will hold interaction coefficients across participants
for (i in 1:7) { # Run logistic regressions for each participant
 demo.dat.i = subset(demo.dat, demo.dat$Speaker==i) # Participant i's data
 glm.i = glm(Judgment~ComplexNP*Topic, family=binomial, data=demo.dat.i)
 CNP.coef[i] = summary(glm.i)$coefficients["ComplexNP","Estimate"]
 Top.coef [i] = summary(glm.i)$coefficients["Topic","Estimate"]
 CxT.coef [i] = summary(glm.i)$coefficients["ComplexNP:Topic","Estimate"]
}

 Now we’ll run one-sample t tests on each of the three coefficients:

t.test(CNP.coef)$p.value # Let's just look at the p values...

[1] 0.02073655

t.test(Top.coef)$p.value # ... computed using one-sample t tests...

[1] 0.000008145483

t.test(CxT.coef)$p.value # ... just as we did in the previous chapter

[1] 0.02073655

 The results show that all three parameters are significant, all with negative effects:
complex noun phrases reduce acceptability, topicalization reduces acceptability, and both
together is especially bad (an interaction, so to be sure of what’s going on, we should also plot

Ch. 11: Logistic regression

29

the interaction, but I’ll skip that here). The fact that the two main effects are also significant
shows that we’re merely testing acceptability, not grammar directly: complex noun phrases
and topicalization may be rare-ish or harder to process, but they’re not ungrammatical in
Chinese!
 But what about the “language as fixed effect fallacy”? Shouldn’t we also run a by-items
analysis? Maybe not in this case, since the sentences were in matched sets, and as I mentioned
in an earlier chapter, Raaijmakers et al. (1999) argue that we don’t need to run by-item analyses
if we match our items well enough. But even if we did run a by-items repeated-measures
logistic regression, there is nothing like minF' to put it together with the by-participants analysis.
To take both participants and items into account, we need to use mixed-effects logistic
regression (which we’ll introduce in the next chapter).
 To end this section, let me note a clever application used by Xu et al. (2006) (who actually
used mixed-effects modeling, but the logic works the same way). Xu and his friends took
advantage of the fact that the sigmoid logistic function looks a lot like what you see when you
give people a series of physical stimuli (like speech sounds) that start firmly in category A and
gradually shift until they end up firmly in category B, and ask the people to decide if each
stimulus is in category A. Xu et al. used this experimental method to study tone categories.
 Now, for some types of stimuli (like speech sounds), people do not perceive the gradual
shift, but instead experience categorical perception, a nonlinear change from one category to
another, with only a few ambiguous items in between. In other words, if you ask people to
decide if each stimulus belongs to category B, you end up with an S-shaped curve for the
probability of saying “yes”: flat at the top (mostly “no”), then a rise (the ambiguous portion),
and then flat on the bottom (mostly “yes”, since now you’re in the area of category B). In other
words, the identification curve in a categorical perception experiment looks a lot like Figure 5
above.
 To analyze categorical perception using repeated-measures logistic regression, the
dependent variable is 1 when the participant perceives category A, and 0 otherwise, and there
is only one independent variable: the stimulus along the gradient continuum (which we can
treat as an ordered series of numbers). Each person will thus give us a series of 0s and 1s, and
our total data set will consist of many such series, each from a different person. Then we can
run a separate logistic regression on each person, computing that person’s intercept (where the
rising part of the curve appears along the x-axis) and slope (how vertical this rising portion is),
and then run one-sample t tests across the participants’ intercepts and slopes. The overall
intercept then tells us where people typically divide up the continuum, and the slope tells us
how sharp (vertical) their categorical boundary is.

Ch. 11: Logistic regression

30

3.2 Multinomial logistic regression

 What if our dependent variable has more than two categories? For example, as is well
known, in the Martian language, different nouns require different classifiers depending on the
noun’s semantic features. So the words for “snake” and “river” take the classifier tiao because
they are oblong and flexible, even though tiao nouns differ in many other ways (e.g., snakes
are animals and rivers aren’t). Martian also has two other “oblong” classifiers, namely gen for
oblong thin objects like needles, and zhi for oblong round objects (round in diameter, i.e.,
cylindrical) like pens. All three classifiers face tricky situations, though; e.g., tiao can also be
used with dogs and hearts, for which oblongness is not the most obvious feature. In this way,
Martian is extremely similar to a certain Earth language that we all know and love, except that
it has the advantage that it’s fake so I can make up a large enough data set to make the
regressions work.
 How can we model classifier choice in terms of semantic features? On the one hand, this
looks like a job for logistic regression: we have a categorical dependent variable (classifier
choice), and we want to predict it in terms of predictor variables (in this case, binary semantic
features). But on the other hand, our dependent variable is not binary, but has three possible
values: tiao, gen, or zhi.
 Don’t worry! We can use multinomial logistic regression. Let’s first discuss the basic
idea, and then look at some special applications.

3.2.1 Multinomial logistic regression: the basic idea

 We start by encoding the semantics of the nouns using some binary features that we think
might be relevant, like flexibility, thinness, and roundness. We’ll just use dummy coding, since
we’re not going to test for interactions, so the variable Flexible has the value 1 for flexible
objects and 0 for non-flexible objects, and so on. We’ll also code the three classifiers as 1, 2,
and 3 (we’re not implying that they go in any particular order; these are just arbitrary labels).
 The coded semantic features for 100 Martian nouns, and their preferred classifiers, are
shown in the file classifiers.txt:

classifiers = read.delim("classifiers.txt")

 Let’s start by doing a series of binary logistic regression analyses to predict, separately,
just the choice of classifier 1 (tiao), classifier 2 (gen), and classifier 3 (zhi). To use glm(...
family = "binomial"), the dependent variable must be binary, so let’s divide our three-level
factor Class into three two-level factors:

classifiers$tiao = 1*(classifiers$Class== 1)

Ch. 11: Logistic regression

31

classifiers$gen = 1*(classifiers$Class== 2)
classifiers$zhi = 1*(classifiers$Class== 3)

 Then we show the three coefficients tables:

summary(glm(tiao ~ Flexible + Thin + Round, family = "binomial", data = classifiers))
summary(glm(gen ~ Flexible + Thin + Round, family = "binomial", data = classifiers))
summary(glm(zhi ~ Flexible + Thin + Round, family = "binomial", data = classifiers))

 The results appear as in Table 3, focusing just on the feature coefficients and using stars
to indicate significance (* means p < .05, ** mean p < .01, *** means p < .001). Since we’re
running three non-independent analyses on the same data (e.g., tiao ==1 implies gen == 0 and
zhi == 0), perhaps we want to use the Bonferroni adjustment, and only count effects as
significant if p < .05/3 = .017; that would show the same significance pattern for the three
features, since all have p < .01.

Table 3. Three separate binary logistic regressions predicting three different classifiers

 tiao B gen B zhi B
Flexible 4.7943 *** -3.0106 *** -3.9869 ***
Thin -1.2262 2.7192 *** -1.9633 **
Round 0.2616 -0.6745 0.4441

 For tiao, the positive coefficient for Flexible means that this classifier is associated with
this feature. For gen, the positive coefficient for Thin means that this classifier is associated
with this feature, but the negative coefficient for Flexibility also means that it is also associated
with rigid (i.e., non-flexible) objects. For zhi, the feature Round turns out not to be significant,
but instead the classifier has negative associations with Flexible and Thin (i.e., it goes with
rigid, thick objects).
 Obviously it would be a lot more satisfying if we could test all three classifiers at the same
time. We can’t do it with glm(), though; it gives us a fatal error, not merely a warning:

summary(glm(Class ~ Flexible + Thin + Round, family = "binomial", data = classifiers))

Error in h(simpleError(msg, call)) :
 error in evaluating the argument ‘object’ in selecting a method for function ‘summary’: y
values must be 0 <= y <= 1

 But R being R, there are other packages available that can do just what we want. One is
the nnet package (Venables & Ripley, 2002; I’ll explain the weird name later), which contains
the function multinom().

Ch. 11: Logistic regression

32

 Let’s try it on the binary dependent variable tiao first, just to get a feeling for its output
report (binary logistic regression is just a special case of multinomial logistic regression). As
usual, the most useful information is found by applying the summary() function to the
multinom object (you don’t need to specify the family, since this function is only for models
of this type):

library(nnet) # You have to install it first
summary(multinom(tiao ~ Flexible + Thin + Round, data = classifiers))

weights: 5 (4 variable)
initial value 69.314718
iter 10 value 32.924678
iter 10 value 32.924678
final value 32.924678
converged
Call:
multinom(formula = tiao ~ Flexible + Thin + Round, data = classifiers)

Coefficients:
 Values Std. Err.
(Intercept) -1.79792 0.716416
Flexible 4.794361 0.857558
Thin -1.22622 0.825574
Round 0.261588 0.732752

Residual Deviance: 65.84936
AIC: 73.84936

 The first part of the report tells us how it ran the optimization algorithm to find the best
model, looping (“iter” = iterating) until it “converged”. The last part tells us about model fit,
showing our old friends residual deviance and AIC. As you can confirm, these are the same
values reported by summary(glm(tiao ~ ...)). The coefficients report also matches the same
values we got for tiao using glm() (compare with Table 3); it also reports the same standard
errors (as you can confirm by yourself).
 It doesn’t give significance values, though, for three reasons. First is a secret reason I’ll
tell you later. Second, as we saw, even statisticians don’t agree on the best way to compute
significance for logistic regression; not everybody likes the Wald test. Third, if you want to use
the Wald test to compute p values, you still can, just by dividing the estimates by the standard
errors to get z values, and then finding the two-tailed p values from those. For example, to
compute the z and p values for the intercept, do this (compare them with summary(glm(tiao
~ ...))):

Ch. 11: Logistic regression

33

int.coef = -1.79792
int.se = 0.716416
int.coef/int.se # z = -2.509603
2*pnorm(-abs(int.coef/int.se)) # p = 0.01208668

 OK, now that we know that multinom() is doing what it’s supposed to do for a known
case, let’s try it on a new case, namely our three-level factor Class:

summary(multinom(Class ~ Flexible + Thin + Round, data = classifiers))

weights: 15 (8 variable)
initial value 109.861229
iter 10 value 55.775753
final value 55.758966
converged
Call:
multinom(formula = Class ~ Flexible + Thin + Round, data = classifiers)

Coefficients:
 (Intercept) Flexible Thin Round

2 0.238963 -4.47156 2.542851 -0.63955
3 1.41512 -5.09572 -0.25016 0.053477

Std. Errors:
 (Intercept) Flexible Thin Round

2 0.838664 1.025919 0.957109 0.82217
3 0.777262 1.152775 0.967931 0.819323

Residual Deviance: 111.5179
AIC: 127.5179

 Since our dependent variable could have any number of levels, the text summary arranges
the table in an expandable way, arranging the independent variables horizontally and using
separate tables for the coefficients and the standard errors. Each line of these two tables gives
values related the comparison of the indicated level with the reference level of 1 (the lowest
value in our labels 1, 2, 3). Again, we can use the reported B and SE values to compute z =
B/SE and thus p. Typing ?summary.multinom doesn’t say this (R help is often unhelpful), but
by using attributes() on my object I learned that we can extract the B and SE values by using
the coefficients and standard.errors attributes. Since we have two comparisons (level 2 vs.
level 1, and level 3 vs. level 1) and four parameters (intercept plus three predictors), each of
these is a two-by-four matrix, and since R knows how to apply functions across the cells of a
matrix, we can compute two-by-four matrices of z values and p values relatively easily:

Ch. 11: Logistic regression

34

results = summary(multinom(Class ~ Flexible + Thin + Round, data = classifiers))
coef.vals = results$coefficients
se.vals = results$standard.errors
z.vals = coef.vals/se.vals
p.vals = 2*pnorm(-abs(z.vals))
z.vals

 (Intercept) Flexible Thin Round
2 0.284932 -4.35859 2.656805 -0.77788
3 1.820648 -4.4204 -0.25844 0.06527

p.vals

 (Intercept) Flexible Thin Round
2 0.775696 1.31E-05 0.007889 0.436638

3 0.06866 9.85E-06 0.796065 0.947959

 Now we can use these p values as-is; there’s no need to do a Bonferroni correction, since
they’re all computed from the same model. The feature Round is still useless (ps > .4) The
feature Thin is associated significantly more strongly with classifier 2 (gen) than with classifier
1 (tiao), with z > 0 and p < .01. Both gen and classifier 3 (zhi) disfavor the feature Flexible,
with zs < 0 and p < .001.

3.2.2 Multinomial logistic regression and computational modeling of language

 It turns out that multinomial logistic regression is quite commonly used in linguistics,
though this is not always obvious since it shows up in different subdisciplines under very
different names. Here I’ll discuss two examples of such applications.
 First, theoretical linguists have become interested in using multinomial logistic regression
to build models of grammar learning, except they don’t call it this; instead, they call such
models maximum entropy models, or MaxEnt for short (see, e.g., Hayes & Wilson, 2008),
or sometimes loglinear models (which includes any generalized linear model involving
logarithms).
 Entropy (熵) is a metaphor from physics, where it refers to how “disorganized” a system
is (for example, water molecules in ice have low entropy, while water molecules in steam have
high entropy). In information theory, entropy refers to how “disorganized” information is, in
the sense of how unpredictable each piece is. For example, a text in human language will have
low entropy (since the words are partially predictable by the grammar), while a list of random
words will have high entropy. Another way to put it is that when the entropy of a text is high,
each word represents a lot of information, since none is redundant (e.g., you have to memorize
each word in a random word list).

Ch. 11: Logistic regression

35

 What about maximum entropy? Again going to the physics metaphor, imagine a
complex ice sculpture (low entropy) sitting on a stove. It first turns into a puddle of water
(higher entropy), but the puddle still has a “shape”. When the water boils away into steam
(maximum entropy), each water molecule is equally distant from all of the others. As in any
optimization problem, the actual maximum depends on the constraints on the system. For
example, if the stove is in a closed kitchen, the water molecules may spread out through the
whole room, but the steam cloud still has a shape (i.e., the room). The importance of a
constraint is quantified as its weight (the same metaphor used in the word 重要).
 The looping algorithm for computing the predictor weights in MaxEnt is similar to how
the water molecules in steam spread out evenly, within the constraints of the room. In this case,
the constraints come from the probabilities of the various outputs, and from the values of the
predictor variables. Aside from these constraints, the weights should be given values that
distribute the probabilities as evenly as possible.
 But it’s already been proven (Berger et al., 1996) that the MaxEnt algorithm gives exactly
the same results as multinomial logistic regression, and that the weights you get are identical
to the statistical model coefficients. Indeed, we’ve already seen this with our own eyes: glm()
uses a logistic regression algorithm, multinom() uses MaxEnt, but they end up giving exactly
the same weights/coefficients in the cases where their powers overlap (binary logistic
regression).
 This leads to a second application of multinomial logistic regression: (artificial) neural
networks, also known as connectionism (聯結主義). In fact, the name of the nnet package is
short for “neural network”. An artificial neural network is a highly simplified computer model
of the human brain. Just as a real brain is built out of millions of brain cells that are individually
stupid, but are connected with so many other brain cells in such a complex way that the overall
brain becomes smart, so an artificial neural network is built out of simple nodes that are
connected to other nodes, encoding the information not in smart nodes but in clever network
patterns. In particular, when a neural network is being trained to give the right outputs when
presented with a set of inputs, the network “learns” by changing the weights of the connections
between nodes. For example, if during training, output node 23 is supposed to be active
whenever input node 61 is active, then the weight of the connection between nodes 61 and 23
will become more positive, and if output node 23 is supposed to be suppressed whenever input
node 97 is active, then the weight of the connection between these nodes will become negative.
 To see how this relates to logistic regression, we can install another R package that draws
the mini-brain for us. First, we load the necessary package:

library(neuralnet) # You have to install it first

 Since the algorithm starts by assigning random weights to all the connections, let’s use
set.seed(1) to make sure that you and I get the same results:

Ch. 11: Logistic regression

36

set.seed(1) # So we get the same results

 Now we use the neuralnet() function to define our network, with three input nodes (one
per semantic feature) and three output nodes (one per classifier). The syntax looks like an
ordinary formula, except that there are three output nodes, so the dependent variable is written
as a sum of variables. We also have to tell the function that we only want two layers in the
network, namely the input and output, without any “hidden” layers in between (which the
algorithm would adjust by itself, depending on the input and output and optimal connection
weights). We also need to tell it how many times to train the input-output connections, adjusting
weights little by little (rep for “repetitions).

train.net = neuralnet(tiao + gen + zhi ~ Flexible + Thin + Round, data = classifiers,
 hidden = 0, rep = 5)

 Let’s look at the mature ("best") network, as shown in Figure 8:

plot(train.net, rep = "best")

Figure 8. A neural network for Martian classifiers

 The input nodes are on the left, and the output nodes are on the right. These six nodes are
connected to each other in all possible ways, and each connection has a positive or negative
weight. There is also a light-colored (blue) node with connections to the outputs; this is just a

Ch. 11: Logistic regression

37

technical trick needed to make the algorithm work (since this node has a fixed value of 1, it
works kind of like the intercept in logistic regression).
 Note the connection weights on the dark (black) lines. They don’t match the coefficients
we got for logistic regression, either binary or multinomial, because this model is doing
something a bit different from those. But since it’s still doing something similar to those models
as well, the weights make sense. For example, the weight of the connection from Flexible to
tiao is very large and positive (0.80571), the weights of the connections from this feature to
gen and zhi are rather large and negative (-0.33986 and -0.46497, respectively), and the weights
of the connections from the useless feature Round to all outputs are small (0.02451, 0.11062,
0.08679, respectively). Thus the feature Flexible facilitates tiao but inhibits gen and zhi, and
Round does nothing, just as we saw before.
 There are lots of things we can do with our trained network, including confirming that it
gives good responses for the items it was trained on and testing what output it will give for new
inputs, which, after all, is how you test whether a brain (human or otherwise) has “learned”
something (for that, we can use the compute() function, which takes old or new inputs as
arguments). We can also look at earlier stages in the learning by setting the rep argument to a
lower value, so we can study how the network weights change over the course of learning; this
kind of analysis makes connectionism an interesting tool for testing theories about language
acquisition (see e.g., Elman et al., 1996).
 Since connectionist models are mainly used to model learning, make predictions, and find
patterns in data, they fall into the category of data exploration, rather than hypothesis testing.
And that’s the third “secret” reason why multinom() doesn’t give p values.
 So as I pointed out in the first chapter and again and again since then: everything in
statistics is related. Who would have guessed that drawing lines through dots (regression) is
actually related to melting ice (maximum entropy) and brains (neural networks)?

3.3 Varbrul

 As I mentioned earlier, logistic regression is at the heart of the widely used Labovian
sociolinguistic variable-rule analyzing program VARBRUL and its descendants. VARBRUL
was invented in the early 1970s (Cedergren & Sankoff, 1974) for a specific linguistic theory
that claimed that mental grammars contain variable rules (Labov, 1969). The earliest version
of VARBRUL actually used probit analysis, since its creators hadn’t yet heard of logistic
regression, which had only been invented a few years before. Since then, the grammatical
theory of variable rules has lost favor, even among Labovians, but logistic regression remains
a crucial analysis tool for studying linguistic variability (see Mendoza-Denton et al., 2003, for
some history and math).

Ch. 11: Logistic regression

38

 There’s a step-by-step guide to make R’s glm() function act like a VARBRUL program
in Johnson (2008, pp. 174-180). If you have no prior experience with VARBRUL, or don’t
need to communicate with people who only know VARBRUL, then you don’t need this.
 If you do have prior experience with VARBRUL or want to introduce your Labovian
friends to R, you don’t need Johnson (2008) either, since R has a package specifically designed
to imitate VARBRUL, cleverly called Rbrul (Johnson, 2009: not the same Johnson!). When
you run it, you get step-by-step prompts on what to do, so even R-fearing sociolinguists can
use it. It also goes beyond VARBRUL in doing fancy stuff like mixed-effects logistic
regression (which we’ll learn about in the next chapter). Unlike most of our R packages,
however, it’s not part of the CRAN network for R packages, but you can read about it at
http://danielezrajohnson.com/rbrul.html. You can install and run the latest version by entering
the following into the R window:

source("http://www.danielezrajohnson.com/Rbrul.R ")

 The following command will then run it in a “shiny” package (that’s what it’s called) that
looks and feels more like a “modern” program, not the old-fashioned text-based R window:

rbrul()

4. Weirder types of regression

 Logistic regression is by far the most commonly used type of non-linear modeling, but
there are others. In this section we’ll look at a few of them: Poisson regression (for count data),
regression with ordinal variables (either as dependent or independent variables), generalized
additive models (for dependent variables that are wiggly in complex ways), Zipf-based
regression for modeling corpus frequencies, and finally a few more even weirder types.

4.1 Poisson regression

 The Poisson distribution is named after the mathematician Siméon Denis Poisson (1781-
1840), who was French, so the first syllable is pronounced /pwa/, not /poi/ (and his name comes
from the French word for fish, not the English word for poison!). Like the binomial distribution,
the Poisson distribution relates to categorical variables, but this time to counts, rather than to
binary or multinomial categories.
 Counts are discrete (you can have two tokens of a word in a corpus, but not 1.5 tokens)
and can’t go below zero (you can’t have minus two word tokens). If your counts are large (e.g.,
vocabulary sizes across languages), the Poisson distribution will be basically normal, but if

http://danielezrajohnson.com/rbrul.html

Ch. 11: Logistic regression

39

your data set is not huge, the Poisson distribution will be categorical and positively skewed,
and linear models aren’t ideal (though they’re still usable, if you adjust for the skew).
 One weird property of Poisson distributions is that the mean is identical to the variance,
so it only has one parameter, called lambda (λ). Of course R has the usual set of functions for
Poisson distributions, so we can get a feeling for it; see the plot in Figure 9.

set.seed(1) # So our results match
pois.sample = rpois(n = 100000, lambda=3)
mean(pois.sample)

[1] 2.99847

var(pois.sample) # Close enough for a random sample!

[1] 3.015338

x = 1:10
plot(x, dpois(x, lambda=3))

ppois(3, lambda=3)

[1] 0.6472319

ppois(3, lambda=3, lower.tail=F)

[1] 0.3527681

Figure 9. A Poisson distribution

 You can think of Poisson regression as a yet another way to extend the chi-squared test,
which also involves counts (in a contingency table). The canonical link function for Poisson

Ch. 11: Logistic regression

40

regression is the logarithm, as for logistic regression. For this reason, both are also considered
loglinear models, since they turn probabilities into a linear equation by using the logarithm.
 This gives us a fifth way to analyze the Martian cheese “data”, where 20 cheese nouns
take the suffix -qfx and 10 don’t. Note that the p value is far smaller than the exact p value
given by the binomial test, which suggests that perhaps this sample is too small for this
asymptotic test.

y = c(20,10) # Just the two counts
summary(glm(y~1, family=poisson)) # p < 2e-16

 Now finally I can explain the Poisson analysis from Myers & Tsay (2015) that I cited at
the beginning of this book. We wanted to know whether Southern Min speakers tend to
reduplicate the discourse morpheme 著 “tioh8” /tiəʔ˦/ (which behaves similarly to Mandarin
對) an odd number of times, while also preferring fewer repetitions overall. So we analyzed
the spoken corpus data in DuiCounts.txt using Poisson regression. The best-fitting model
(according to analysis of deviance model comparisons using anova(... test = "Chisq")) proved
to be a complex one involving interactions and polynomials (since the counts drop off
nonlinearly):

dui = read.delim("DuiCounts.txt")
dui.poly.pois = glm(Count ~ I(NumSyl^2) * NumSyl * Oddness,
 family = "poisson", data = dui)
summary(dui.poly.pois) # Here are the coefficients

Coefficients:
 Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.77697 0.453464 8.329 < 2e-16 ***
I(NumSyl^2) -0.44533 0.088341 -5.041 4.63E-07 ***
NumSyl 1.627676 0.371133 4.386 1.16E-05 ***
Oddness 2.847068 0.453464 6.278 3.42E-10 ***
I(NumSyl^2):NumSyl 0.024603 0.006124 4.017 5.89E-05 ***
I(NumSyl^2):Oddness 0.242203 0.088341 2.742 0.00611 **
NumSyl:Oddness -1.47633 0.371133 -3.978 6.95E-05 ***
I(NumSyl^2):NumSyl:Oddness -0.012 0.006124 -1.96 0.05003 .

 We can see what this model is doing if we plot its predictions against the real counts, as
in Figure 10:

dui$Count.hat = predict(dui.poly.pois, type="response")
plot(dui$NumSyl, dui$Count, pch=19, # Black dots (observed)
 xlab="Number of syllables", ylab="Counts")
lines(dui$NumSyl, dui$Count, lwd=2) # Thick line (observed)

Ch. 11: Logistic regression

41

points(dui$NumSyl, dui$Count.hat, pch=0) # White squares (model)
lines(dui$NumSyl, dui$Count.hat, lwd=1) # Thin line (model)
par(lwd=1) # Thin line for legend box
legend("topright",
 lwd=c(2,1), # Thick vs. thin lines
 pch=c(19,0), # Black dots vs. white squares
 legend=c("Observed","Model"))

Figure 10. A perfect (too perfect?) Poisson model

 As you can see, the model is a perfect fit to the real data. This may be seem good, but it’s
also kind of suspicious: the data are so few, and there are so many parameters, so this is very
likely a case of overfitting; that is, we probably can’t generalize from this data set. But at least
we’ve shown that a model with oddness and number of syllables works.
 Just for practice, let’s check if the dispersion assumption is valid here (as with logistic
regression, the assumed value is 1).

library(DHARMa) # Only need to do this once per session
testDispersion(dui.poly.pois, plot = F)

 DHARMa nonparametric dispersion test via sd of residuals fitted vs. simulated

data: simulationOutput
dispersion = 0.053408, p-value = 0.008
alternative hypothesis: two.sided

 Uh-oh. Indeed, it looks like our analysis was too good to be true: our model was so
complex that its powers swamped the relatively small data set, resulting in a serious case of
underdispersion. As noted earlier, overdispersion is more common in real life, since real data
tends to be noisier than models expect.

Ch. 11: Logistic regression

42

 For yet another (underdispersed) use (or misuse?) of Poisson regression, see the R code
in the MiniCorp program (Myers, 2012b), which tests the reliability and ranking of
phonological constraints in word lists (http://personal.ccu.edu.tw/~lngmyers/MiniCorp.htm).
Several more linguistic applications, from somebody who knows a lot more about Poisson
regression than I do, are reviewed in chapter 13 of Winter (2020). In particular, Winter suggests
that if you do encounter overdispersion (the more likely scenario), you can switch over to
something called negative binomial regression, which doesn’t make the Poisson assumption
that the mean and variance be identical (i.e., the dispersion assumption); it’s available via the
glm.nb() function in the MASS package (Venables & Ripley, 2002 Modern applied statistics
with S).

4.2 Regression with ordinal variables

 Besides the continuous-valued or nominal variables that we’ve been working with in this
book, regression models can also handle ordinal variables. As you may recall from the very
beginning of the book, these are variables that are composed of discrete categories that occur
in a specific order. For example, lexical access by humans is affected not just by lexical
frequency (based on a corpus), but also subjective familiarity (based on people’s intuitions).
The familiarity scores usually come from asking a bunch of people to rate each word on an
ordinal scale, say 1 = least familiar to 7 = most familiar. We have no way to know if the “real”
distance from familiarity = 1 to familiarity = 2 is the same as from familiarity = 2 to familiarity
= 3. All we know is the order: 3 is higher than 2, which is higher than 1.
 This is a such a subtle distinction that it’s hard to tell if it really makes a practical
difference. But if you want to be strict about it, it is indeed possible to code an ordinal variable
to represent the order, without also implying equal distances between the levels.
 To try this out, let’s look at the data in freqdur.txt yet again, which you may remember
has the results of a fake experiment collecting spoken durations in milliseconds, as well as
lexical frequency counts, mean subjective familiarity scores, and mean subjective age of
acquisition (AoA) scores for real English words. All of these values can be treated as
continuous, but let’s turn the two subjective scores into integers (from 1 to 6) to be closer
reflections of their original ordinal nature (i.e., what each participant gave the experimenter,
before the values were averaged together).

fd = read.delim("freqdur.txt")
fd$AoA.ord = floor(fd$AoA) # Convert to integers
fd$Fam.ord = floor(fd$Fam) # Convert to integers
fd$AoA.ord = as.factor(fd$AoA.ord) # Convert to factor
fd$Fam.ord = as.factor(fd$Fam.ord) # Convert to factor

 Here are the original levels for these two factors:

http://personal.ccu.edu.tw/%7Elngmyers/MiniCorp.htm

Ch. 11: Logistic regression

43

levels(fd$AoA.ord)
[1] "1" "2" "3" "4" "5" "6"
levels(fd$Fam.ord)
[1] "1" "2" "3" "4" "5" "6"

 One way to treat these as ordinal factors to use Helmert coding (named after German
scholar Friedrich Robert Helmert, 1843-1917, who studied “geodesy” [大地測量學], and no,
I’d never heard of it before either). This coding scheme is like effect or sum coding in using
values that sum to zero, but it does it in a sequential way, from “first” to “last” level (according
to the ordering you want).

fd$AoA.ord.h = fd$AoA.ord # Prepare for Helmert coding
fd$Fam.ord.h = fd$Fam.ord # Ditto
contrasts(fd$AoA.ord.h) = contr.helmert(levels(fd$AoA.ord.h))
contrasts(fd$Fam.ord.h) = contr.helmert(levels(fd$Fam.ord.h))

 This is what Age of Acquisition looks like now (ditto for Familiarity):

contrasts(fd$AoA.ord.h)
 [,1] [,2] [,3] [,4] [,5]
1 -1 -1 -1 -1 -1
2 1 -1 -1 -1 -1
3 0 2 -1 -1 -1
4 0 0 3 -1 -1
5 0 0 0 4 -1
6 0 0 0 0 5

 Since our dependent variable (Dur) is continuous, let’s do an ordinary linear regression,
but with these ordinal variables as the independent variables:

summary(lm(Dur ~ log(Freq) + AoA.ord.h + Fam.ord.h, data = fd))

 Among regression report stuff, we get this long coefficients table:

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 252.874 2.28286 110.77 <2e-16
log(Freq) -0.85010 0.53879 -1.578 0.1148
AoA.ord.h1 1.18439 2.32400 0.510 0.6104
AoA.ord.h2 0.09957 0.91143 0.109 0.9130
AoA.ord.h3 0.42067 0.52258 0.805 0.4209
AoA.ord.h4 0.75505 0.42800 1.764 0.0779
AoA.ord.h5 0.71604 0.51511 1.390 0.1647
Fam.ord.h1 -5.84849 5.34241 -1.095 0.2738

Ch. 11: Logistic regression

44

Fam.ord.h2 -1.55746 1.93729 -0.804 0.4215
Fam.ord.h3 -0.77988 1.06387 -0.733 0.4636
Fam.ord.h4 -0.32551 0.71897 -0.453 0.6508
Fam.ord.h5 -0.62202 0.69976 -0.889 0.3742

 This is testing the mean of all the levels up to the indicated level against the next level in
the order. For example, the marginally significant effect for AoA.ord.h4 (p = .0779) tests the
mean of levels 1-4 against level 5.
 Another totally different way to treat a factor as ordinal is to use polynomial (多項式)
coding, which links each level to each part of a polynomial function (y = b0 + b1x + b2x2 +
b3x3 +), which allows each level to act as if it’s “beyond” all of the previous levels. Why?
Because the y = b1x part is linear, the y = b2x2 part is curved a bit, and the y = b3x3 part is even
wigglier, and so on. By adding this wiggliness, the specific distances between points along the
independent variable become less important, and their overall order has a greater impact.
 You can convert a factor to polynomial coding in three different ways, but they all have
the same effect:

fd$AoA.ord.p = fd$AoA.ord # Prepare for polynomial coding
fd$Fam.ord.p = fd$Fam.ord # Ditto
Method 1
fd$AoA.ord.p = factor(fd$AoA.ord, ordered = T)
fd$Fam.ord.p = factor(fd$Fam.ord, ordered = T)
Method 2
fd$AoA.ord.p = ordered(fd$AoA.ord)
fd$Fam.ord.p = ordered(fd$Fam.ord)
Method 3
contrasts(fd$AoA.ord.p) = contr.poly(levels(fd$AoA.ord.p))
contrasts(fd$Fam.ord.p) = contr.poly(levels(fd$Fam.ord.p))

 No matter how you do it, the contrasts end up looking like this, again illustrating with Age
of Acquisition, where “L” = “linear”, “Q” = “quadratic” [二次函數], “C” = “cubic” [三次方

程], and then they run out of technical terms and just show the powers directly as they should
have done in the first place.

contrasts(fd$AoA.ord.h)
 .L .Q .C ^4 ^5
[1,] -0.5976143 0.5455447 -0.372678 0.1889822 -0.06299408
[2,] -0.3585686 -0.1091089 0.5217492 -0.5669467 0.31497039
[3,] -0.1195229 -0.4364358 0.2981424 0.3779645 -0.62994079
[4,] 0.1195229 -0.4364358 -0.2981424 0.3779645 0.62994079
[5,] 0.3585686 -0.1091089 -0.5217492 -0.5669467 -0.31497039
[6,] 0.5976143 0.5455447 0.372678 0.1889822 0.06299408

Ch. 11: Logistic regression

45

Now let’s run our ordinary linear regression on Dur using these things:

summary(lm(Dur ~ log(Freq) + AoA.ord.p + Fam.ord.p, data = fd))

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 252.874 2.2829 110.77 <2e-16
log(Freq) -0.8501 0.5388 -1.578 0.115
AoA.ord.p.L 5.3303 3.5689 1.494 0.135
AoA.ord.p.Q 0.8873 2.9796 0.298 0.766
AoA.ord.p.C 0.4523 2.2154 0.204 0.838
AoA.ord.p^4 -1.4912 1.6119 -0.925 0.355
AoA.ord.p^5 0.3802 1.2513 0.304 0.761
Fam.ord.p.L -6.6420 7.2869 -0.912 0.362
Fam.ord.p.Q 4.8530 5.9392 0.817 0.414
Fam.ord.p.C -5.5443 4.3310 -1.280 0.201
Fam.ord.p^4 1.9267 2.8250 0.682 0.495
Fam.ord.p^5 -1.3674 1.7611 -0.776 0.438

 Note that the p values are totally different from what we got with Helmert coding, since
here “ordinal” has a totally different meaning, namely, the higher the power (from L to Q to C
and beyond), the “wigglier” the effect is. For a real-life linguistic application of this this kind
of analysis (in logistic regression, in fact), see Johnson (2008, pp.170-174).
 What if the dependent variable is itself ordinal? For example, what if we want to analyze
whether lexical frequency helps predict subjective familiarity in one speaker, where familiarity
is on that ordinal scale? We could pretend that this is a continuous variable and do linear
regression (that’s what most people do), but what if we want to be strict, and treat it as an
ordinal variable?
 Well, we can use something called ordinal logistic regression. This is a generalization
of logistic regression, where instead of comparing binary responses of 1 vs. 0, we compare
ordinal responses of 1 vs. higher, 2 vs. higher, and so on. A function for computing it is in the
MASS package (Venables & Ripley, 2002):

library(MASS) # As usual, you have to install it first

 So let’s take the data in the data frame fd again, but this time try to predict the ordinal
variable Fam.ord from logFreq, which we create using log(Freq):

fd$logFreq = log(fd$Freq)

 The MASS function we want is called polr(), which stands for proportional odds logistic
regression:

Ch. 11: Logistic regression

46

polr.all = polr(Fam.ord ~ logFreq, data = fd)
summary(polr.all)

Re-fitting to get Hessian

Call:
polr(formula = Fam.ord ~ logFreq, data = fd)

Coefficients:
 Value Std. Error t value
logFreq 1.222549 0.044242 27.63346

Intercepts:

 Value Std. Error t value
1|2 -3.7506 0.4116 -9.1123
2|3 -1.1413 0.1384 -8.2467
3|4 0.8544 0.1057 8.0850
4|5 3.4360 0.1381 24.8753
5|6 7.5443 0.2280 33.0847

Residual Deviance: 3281.896
AIC: 3293.896

 Note that while it runs separate analyses for the overall model (in the “Coefficients” table),
as well as for each ordered level (in the “Intercepts” table), it only gives the test statistic for
each: just the t values, not the p values. This is because the Wald test is particularly unreliable
for ordinal logistic regression, and it’s not even clear what the df should be. If the sample is
very large (as it is here: nrow(fd) == 1689), we can treat the t values as z scores (remember
that t distributions turn into the normal distribution as the sample size grows). In this case, all
of our |t| > 1.96, so they all have two-tailed p < .05.
 If you want to avoid all Wald test problems, we can use a likelihood ratio test comparing
our full model with one that is missing log frequency, which reports the chi-squared-distributed
likelihood ratio statistic (as “LR stat.”); try it!

polr.int = polr(Fam.ord ~ 1, data = fd) # Remove Freq (just intercept remains)
anova(polr.int, polr.all) # df = 1, LR stat. = 1085.159, p = 0 # Not literally zero!!

 So for this analysis we could report the following analysis of the effect of the continuous
variable of log frequency on the ordinal variable familiarity: χ2(1) = 1085.16, p < .001.

4.3 Taking Zipf into account

 One kind of categorical data is particularly troublesome in linguistics: word frequencies,
or more generally, frequencies of lexical classes, like the numbers of monosyllabic words, or

Ch. 11: Logistic regression

47

irregular verbs, or Chinese nouns that take the tiao classifier, and so on. These are problematic
because word frequencies form an extremely skewed distribution: most words in a corpus are
rare. This is related to Zipf’s law, which we mentioned early in this book: if you rank words
from most to least frequent, word #2 will be about 1/2 as frequent as word #1, and so on. By
the time you get to word #100, the frequencies are already going to be extremely tiny.
 This fact has caused us problems already; it’s why we log-norm lexical frequencies, even
though it doesn’t totally eliminate the skew. But as Baayen (2001) points out, it causes an even
more fundamental problem: it kills the dream that we can make reliable claims based on
ordinary sampling logic. That is, whereas a t test or even a logistic regression can give useful
results even for samples with just a hundred or so data points, this would far too small a corpus
to make word frequency claims, since most words are too rare. It’s even worse than this, though,
since Zipf’s law says that even if you do have a gigantic corpus, most of the words in it will
still be rare! There’s just no way to get a large enough corpus to quantify everything about it.
 Fortunately, we can get a bit closer if we use regression models that explicitly take Zipf’s
law into account. R has a package for just this purpose: zipfR (Evert & Baroni, 2007), which
is designed to create yet another kind of loglinear model, this time called Large-Number-of-
Rare-Events (LNRE) modeling.
 To give you a quick feeling for how it works, let’s apply it to the tiny corpus we played
with way back in chapter 2: Jabberwocky_OnlyWords.txt. First we’ll load it in as a string
vector using readLines(), just as we did before (read.table() would be more awkward here):

jabberwocky = readLines("Jabberwocky_OnlyWords.txt")
head(jabberwocky) # Remember this?

[1] “jabberwocky” “twas” “brillig” “and” “the” “slithy”

 Remember that we can compute the frequency table using table(). This gives us a sense
of Zipf’s law, since most words have a frequency of just 1:

table(jabberwocky)

jabberwocky
 all and arms as awhile
 2 14 1 2 1
 back bandersnatch beamish beware bird
 1 1 1 2 1
...

 We can get an even clearer sense of the abstract power of Zipf’s law if we apply table()
twice, to show us the frequencies of every observed frequency. This is called a frequency
spectrum, showing the token frequencies (top row) and the type frequencies (bottom row).

Ch. 11: Logistic regression

48

jabberwocky.tabtab = table(table(jabberwocky))
jabberwocky.tabtab

1 2 3 6 7 14 19
56 28 3 1 1 1 1

 This reveals that there are 56 word types with a token frequency of 1, and 28 words with
a frequency of 2: exactly half, just as Zipf’s law predicts! By the same law, there should be
56/3 = 18.66667 words with a frequency of 3, but in reality there are only three such words,
and all of the remaining frequencies only have at most one word. So in this tiny sample, Zipf’s
law works for the highest-frequency words, but fails for rarer words.
 Now let’s see what the zipfR package can do with this tiny corpus. First we start it up
(after installing it):

library(zipfR)

 Then we use zipfR’s spc() function to convert our hand-made frequency spectrum into a
proper spectrum object, which contains the same information, but coded in a way that other
zipfR functions can use. The table above actually uses character strings for the token
frequencies (as shown by the names() function), so I use the as.numeric() function to convert
them to numbers. The spc() function’s m argument is for the frequency classes (here, the token
frequencies), and the Vm argument is for the sizes of these classes (here, the type frequencies):

jabberwocky.spc = spc(m=as.numeric(names(jabberwocky.tabtab)),
 Vm = as.numeric(jabberwocky.tabtab))

 Here’s what we created:

jabberwocky.spc

 m Vm

1 1 56
2 2 28
3 3 3
4 6 1
5 7 1
6 14 1
7 19 1

 N V
 167 91

Ch. 11: Logistic regression

49

 The top part shows the same numbers we got with table(table()), and the bottom sums
them up: N is the number of tokens (i.e., length(jabberwocky)), and V is the vocabulary size
(i.e., length(unique(jabberwocky))). Now we can run a Zipf-based regression model using
the lnre() function. This function can run several types of related models, but let’s just use the
simplest one: the Zipf-Mandelbrot model, named after Zipf and the Polish/French/American
mathematician Benoit Mandelbrot (1924-2010). Math nerds may know him from the amazing
(and beautiful) Mandelbrot set (https://en.wikipedia.org/wiki/Mandelbrot_set). To use this
model, we set the first argument to “zm”:

jabberwocky.zm = lnre("zm",jabberwocky.spc)

 To see what’s inside it, we just enter its name (we don’t need summary()):

jabberwocky.zm

Zipf-Mandelbrot LNRE model.
Parameters:
Shape: alpha = 0.0000001075863

Upper cutoff: B = 0.01650917

[Normalization: C = 60.57236]
Population size: S = Inf
Sampling method: Poisson, with exact calculations.

Parameters estimated from sample of size N = 167:
 V V1 V2 V3 V4 V5

Observed: 91.00 56.00 28.00 3.0 0.00 0.00 ...
Expected: 97.47 56.73 23.06 10.5 4.52 1.77 ...

Goodness-of-fit (multivariate chi-squared test):

X2 df p
13.49343 3 0.003682427

 Look at the parameters table. The row of observed frequencies are the same that we have
in jabberwocky.tabtab or jabberwocky.spc, where V is the total vocabulary size, and V1,
V2, and so on are the numbers of words with a frequency of 1, 2, and so on. The row of expected
frequencies are the values generated by the Zipf-Mandelbrot model. This model does a not-bad
job with the two highest frequencies (V1 and V2), but it does terribly starting with V3. This
makes perfect sense, since as we saw ourselves, the first highest frequencies follow Zipf’s law
very well, but after that it fails, just like this model.
 This lack of fit is quantified in the goodness-of-fit chi-squared test at the end of the report:
χ2(3) = 13.49, p = .003. This high chi-squared value is bad news: the two rows of values

https://en.wikipedia.org/wiki/Mandelbrot_set

Ch. 11: Logistic regression

50

(observed and expected) are quite unlikely to differ just by chance, so the model is a bad fit.
Of course this is partly because our corpus is so tiny, but in my experience working with larger
corpora, the fit always fails at some point. So even the zipfR package can’t completely
eliminate the bothersome implication of Zipf’s law.
 But assuming the model isn’t a total failure, we can still use this model for useful things.
For example, imagine you are transcribing the speech of a child acquiring English as a first
language, and this “Jabberwocky” poem was the only data you have from this child (yes, a very
weird child). So this kid produced only 167 word tokens (in your records anyway), during
which there were 91 different word types. What does this predict for larger corpora, say one
with 10,000 word tokens? How many word types would we expect? In other words, how large
is this kid’s actual vocabulary, way beyond just this one poem?
 To find out, we can use the lnre.vgc() function, which uses a fitted LNRE model to
estimate a vocabulary growth curve, which reflects the increase in word types (V) as we
increase the number of word tokens (N) in our sample (corpus). We’ll compute it from our
fitted Zipf-Mandelbrot model, starting from the first word token up to 10,000 word tokens (way
beyond what we’ve actually recorded), probing the growth curve at 20 points along the way:

jabberwocky.vgc = lnre.vgc(jabberwocky.zm, seq(1, 10000, length=20))

 To see what we’ve modeled, let’s just plot it, as in Figure 11, which shows the increase
in vocabulary size as the projected corpus size (N) increases (E[V(N)] = Expected Vocabulary
size as a function of the Number of tokens).

plot(jabberwocky.vgc)

Figure 11. Predicted growth curve for “Jabberwocky”

 The model thus predicts that the growth curve gets less steep. That is, if “Jabberwocky”
is good representative of this kid’s language production, and if this model is a good model of

Ch. 11: Logistic regression

51

this tiny corpus (both are big “if”s), then we can expect that if we recorded 10,000 words from
this kid, there would only be about 300 different words in total. If the kid is young enough,
maybe 10,000 is even a good guess for the total number of word tokens ever produced; in that
case, we can guess that the kid’s actual vocabulary size is 300.
 This kind of logic (albeit using much larger corpora) can also be applied to testing the
productivity of various morphological processes; see Evert and Baroni (2007) and Baayen
(2008) for examples. In particular, they show that affixes that seem relatively rare in the corpus
may actually be more productive than more familiar affixes, simply because they appear in
more rare words (and thus are more likely to be applied to create new words in natural language
production).

4.4 Generalized additive models

 Given the variety of models we’ve seen in this chapter, you might think that generalized
linear models are so generalized that there’s no way they could be generalized even more, but
they can! All of the above models involve well-established functions and distributions, but with
the increasing power of computers, we don’t even need to be limited by these mathematical
constraints anymore. Using generalized additive modeling (GAM) we can analyze the
relationship between dependent and independent variables even if the shape of this relationship
is arbitrarily wiggly, rather than a single neat function. As in all types of models, the individual
independent variables are still added up (hence the name), but each one of them is now subject
to a different, arbitrary function that can make the overall model as non-linear as your data
demand. Interactions can also be analyzed in such models, but this gets complicated, so you’ll
have to read about GAM yourself, in tutorials like Clark (2013) (relatively easy), Tremblay
and Newman (2014) (somewhat harder), and Wood (2006) and Baayen et al. (2017) (hardest).
For linguists maybe the best not-hard introduction is Winter and Wieling (2016), who apply
GAM (and other models) to language change.
 Baayen et al. (2017) motivate the increasing use of GAMs in psycholinguistics and related
fields by referring to Plato’s allegory of the cave, where Plato described objects in the
observable world as being mere shadows on a cave wall projected from “ideal” objects that we
cannot see. In this case, the cave is a cage of functions that statisticians have tended to use
mainly to make the calculations simpler. But generalized additive modeling, it is claimed, can
let research escape this cage (or cave) and see the real world (it is claimed). They apply this
technique to modeling the complex up-and-down changes in responses across the many trials
of a long psycholinguistic experiment, which can obscure the experimental contrasts that you
care about. Another linguistic example of this new technique is given by Tremblay and
Newman (2014), who use it to bring some order to the complex patterns in event related
potentials (ERPs) studied in brainwave research.

Ch. 11: Logistic regression

52

 The most widely used GAM package for R is mgcv (Woods, 2006), which stands for
Mixed GAM Computation Vehicle (sorry, that’s what it stands for). Let’s load it up:

library(mgcv) # You have to install it first, remember?

 Let’s try it out on the data set in RTacc.txt, which shows the accuracy rates and reaction
times for a set of items in some sort of experiment:

rtacc = read.delim("RTacc.txt")

 As Figure 12 shows, the relationship between the two variables is not linear, with accuracy
rates starting out flat for the faster responses, and then falling in a more linear fashion.
Presumably this shape arises because responses are both more accurate and faster (lower RT
values) for easier items, but the accuracy rate has hit a ceiling for the easiest items (it’s far from
the floor of 0 accuracy, though).

plot(Acc ~ RT, data = rtacc)

Figure 12. A nonlinear scatter plot

 We can replot this with a smoothed loess line to make the overall trend easier to see, as
shown in Figure 13, but this is not a regression model that can be used to test hypotheses; it’s
just a form of descriptive data exploration.

scatter.smooth(rtacc$RT,rtacc$Acc) # Smoooooth!

Ch. 11: Logistic regression

53

Figure 13. A nonlinear scatter plot with a loess line

 With GAM, however, we can include a smoothing function inside our equation. These
functions are called splines (樣條函數), which act like the splines (雲規) used by engineers to
fit weird shapes by “pushing” and “pulling” at various points. For example, we can use cubic
splines, which are a bunch of little wiggly cubic equations (y = b0 + b1x1 + b2x2

2 + b3x3
3)

overlapped on each other, or use thin plate splines, which overlap wiggly lines created by
analogy with a bending thin metal plate (which is what the physical-world engineering spline
is). The latter type of spline is the default for the gam() function, and that’s good enough for
our demonstration.
 To make this work, all we have to do is put the independent variable that we want to
smooth inside the s() function (“s” for “smooth”), and the gam() function will do the rest:

rtacc.gam = gam(Acc ~ s(RT), data = rtacc)

 Before looking at the summary() of this GAM object, let’s plot it, as in Figure 14.

plot(rtacc.gam)

Figure 14. A smoothed fit to our nonlinear Acc ~ RT data

Ch. 11: Logistic regression

54

 It’s shaped a lot like our loess line, which means it’s capturing the essence of our data,
instead of trying to force it to match some specific function. It also shows the 95% confidence
band, in case we need that, and the distribution of the x values (the little marks at the bottom).
 Now let’s see what the statistical analysis looks like for this model:

summary(rtacc.gam)

Family: gaussian
Link function: identity

Formula:
Acc ~ s(RT)

Parametric coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.848267 0.007574 112 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
 edf Ref.df F p-value
s(RT) 3.391 4.188 84.49 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.925 Deviance explained = 93.3%
GCV = 0.002016 Scale est. = 0.0017209 n = 30

 Explaining all of this would take a lot more space than we have in this already very long
chapter, but at least we can see that the model is pretty good: the adjusted R2 is .925 (this
measure is valid here because it’s partly a linear model), the deviance explained is 93.3% (this
measure is valid here because it’s partly not a linear model), and the smoothed RT predictor is
highly significant (p < .0001). Of course, as the report says, this p value only represents the
approximate significance, and in fact “edf” stands for “estimated df”, since one cost of throwing
out all of our usual functions and distributions and using splines instead is that we can only get
approximate values. We don’t even get a coefficient for RT, as we would for other types of
regression, since the line, being composed of overlapping little bits, can be wiggly to an
undefined extent, and so one coefficient, or even the many coefficients for polynomial lines,
can’t define it. But that’s OK: we can see from the plot what the overall shape looks like and
how its various portions are shaped (flat on the left and falling on the right).
 One thing you might have noticed is that the y axis in the GAM plot isn’t the same as in
the original scatter plot: in the raw data, it’s Acc (our dependent variable), ranging from around
0.5 to around 1.0, but in the GAM plot it’s called “s(RT, 3.39)” and it ranges from around -0.4

Ch. 11: Logistic regression

55

to around 0.2. That’s because the plot here is just showing the smoothed part of the model, not
any other stuff, such as the intercept.
 The simplest way to get the model’s predicted trend line in plot-friendly format is to use
the predict() function, telling it to predict within the original response scale (Acc). To get a
nice curve for the line, we’ll generate these predictions for values in the RT range that are
closer together than the actual RT values:

rtacc.fit = data.frame(RT = seq(min(rtacc$RT),max(rtacc$RT),1)) # 648, 649, 650, ...
rtacc.fit$Acc = predict(rtacc.gam, newdata=rtacc.fit, type = "response")

 Now we can just add this line to a regular scatterplot, giving us Figure 15:

plot(Acc ~ RT, data = rtacc) # Regular scatter plot
lines(Acc ~ RT, data = rtacc.fit) # The GAM trend line

Figure 15. Quick’n’dirty GAM plot with original y-axis scale, plus original data points

 If we want to show that 95% confidence band, we can derive them ourselves using the
predicted standard errors (SE), and then using the critical value of 1.96 for the normal
distribution (in the hopes that everything is roughly normal with large enough sample sizes).
As shown by the match between Figure 16, generated below, and Figure 14, I guess this is how
plot.gam() works too:

rtacc.fit$SE = predict(rtacc.gam, newdata=rtacc.fit, type = "response", se.fit=T)$se.fit
library(ggplot2) # Cuz it's got a built-in confidence band thingie
ggplot(data = rtacc.fit, mapping = aes(x = RT, y = Acc)) +
 geom_line() + geom_ribbon(mapping = aes(ymin = Acc-SE*1.96, ymax= Acc+SE*1.96),
 alpha = .2) + labs(y = "Accuracy")

Ch. 11: Logistic regression

56

Figure 16. Quick’n’dirty GAM plot with original y-axis scale, plus 95% confidence band.

 Plotting all of this together (original y-axis, original data points, and 95% confidence band)
will be left to the interested reader.
 Before finishing this section, I should say that even though GAM is very useful (and
becoming ever more popular), you should be aware that its ability to model any wiggly curve
comes with a big limitation: it can’t extrapolate (外推), that is, predict values outside the range
of the actual data (see the problems that arise when you try to extrapolate using such models
anyway: https://fromthebottomoftheheap.net/2020/06/03/extrapolating-with-gams/). The basic
problem should be obvious: if the wiggliness has no formula, there’s no way to know what
wiggles you’ll get before or after what you see in your plot. This makes GAM quite different
from linear regression, where we can expect the line to stretch out the same way beyond our
plot. Nevertheless, you can still interpolate (插值), that is, make predictions for values that
are missing from your data but are still within your data’s range.

4.5 Even more nonlinear models

 Let me end with quick mentions of three other nonlinear tools in R that you might want
to try some day. The first is the base package function nls(), which stands for nonlinear least
squares. As the name suggests, it generalizes the metric used by linear regression to find the
best-fitting straight line, but the clever thing is that it does so for any crazy function you want
to use to model your dependent variable in terms of your independent ones, even if your
function doesn’t use a built-in structure that’s linear, polynomial, exponential, logistic, or
something else with a special-purpose R function. It does this by looping through possible
coefficient values until changing them doesn’t make the fit any better. The following fake R
code illustrates how you might use it to predict some variable y from the variable x in terms of
some function you invented called myfunction(), which also takes the model constants a and

Ch. 11: Logistic regression

57

b (like the coefficients in an ordinary model), where you think a = 0, b = 1 are reasonable
starting point (maybe a is added and b is multiplied in your function):

mymodel.nls = nls(y~myfunction(x,a,b), start = list(a = 1, b = 1), data=mydata)

 The second type of model is called gamma regression, which uses yet another family of
distributions (we’ll see it again in the chapter on Bayesian statistics) that has the useful property
of being as skewed or symmetrical as you like, depending on its parameters. Thus it can be
used to model not-completely-normal phenomena like reaction times; Lo & Andrews (2015)
recommend this approach since it doesn’t distort the data the way the usual lognorming method
does. This fake R code gives you some idea of how it might be used:

myrtmodel.gamma = glm(RT ~ Something, family=Gamma(link=identity), data=mydata)

 The third (and final!) fancy nonlinear model that I’ll mention is called quantile
regression, a generalization of generalized additive modeling. Ordinary linear regression,
similar to other parametric tests like the t test and ANOVA, is focused on the mean and variance,
but there are many other interesting aspects of a distribution that we might want to test,
especially perhaps if it’s not normally shaped, such as the median, the minimum, or the
maximum. Or maybe our data looks perfect for a linear model, except that it seriously violates
the homoscedasticity assumption, with widely varying variance in the dependent variable as a
function of the independent variable. A specific linguistic application might be to to study a
child’s median scores on some difficult task over many weeks of testing. Well, with quantile
regression, as implemented in the qgam package (Fasiolo et al., 2021), you can do just that:

qgam(Score ~ Week, qu = 0.5, data = mydata) # qu = quantile as a value from 0 to 1
qgam(Score ~ Week, qu = 0.75, data = mydata) # Top quartile of scores

 The creators of the package have posted a rich (but technical) tutorial at this website:
https://cran.r-project.org/web/packages/qgam/vignettes/qgam.html. Note that the full name of
the package has the word “Bayesian” in it (see final textbook chapter for more on this).

5. Conclusions

 Well, this was another long chapter. That’s only to be expected when your topic is a
generalization of the already long previous chapter. Generalized linear models use various
tricks to extend the power of regression to non-linear situations. By far the most common type
is (binary) logistic regression, which analyzes binary dependent variables, which are widely
used in linguistic research, from accuracy in experiments to the presence or absence of

Ch. 11: Logistic regression

58

linguistic markers in sociolinguistics. The trick used by logistic regression is the logit, or log
odds, which both expands the y-axis range from 0-to-1 to minus-infinity-to-plus-infinity, and
captures the insight that adding independent variables is like multiplying probabilities. Despite
the novelty, much of what we learned about (linear) multiple regression still applies to logistic
regression, just in modified form: we can have more than one predictor, we have to watch out
for collinear predictors, we can code the factors in various ways, we can test for interactions,
we can test both numerical and categorical predictors, we should check to see if our model fits
the data well (using log likelihood and residual deviance), we should plot our model in intuitive
and useful ways (perhaps with log odds on the y-axis), we can compare models using likelihood
ratio tests (computed with analysis of deviance instead of analysis of variance), we can run
repeated-measures analyses with hand-written R code, and we can estimate effect sizes by
standardizing the coefficients (except that it’s harder to take the dependent variable into
account). There are also new issues; in particular, when working with logistic regression you
also have to watch out for problems caused by the algorithm itself (it may crash or give
impossible values). We also saw that logistic regression can be generalized beyond binary
variables, with multinomial logistic regression showing up (in disguise) in many places, from
computer models of the brain to variable rule analysis. Yet logistic regression is only one
member of the family of generalized linear models, which also includes Poisson regression,
ordinal logistic regression, Large Numbers of Rare Events modeling and a hot new method
called generalized additive modeling. All of these techniques rely on powerful computers to
build and test models by trying this and that until the models work, instead of plugging numbers
into fixed equations as in traditional linguistic methods like t tests, chi-squared tests, ANOVA,
and linear regression. The same increase in computer power has also made the rest of this
book’s statistical techniques possible, as we will see.

References

Agresti, A. (2007). An introduction to categorical data analysis, second edition. Wiley-

Interscience.
Albert, A., & Anderson, J. A. (1984). On the existence of maximum likelihood estimates in

logistic regression models. Biometrika, 71 (1), 1-10.
Allerup, P., & Elbro, C. (1998). Comparing differences in accuracy across conditions or

individuals: An argument for the use of log odds. The Quarterly Journal of Experimental
Psychology, 51A (2), 409-424.

Baayen, R. H. (2001). Word frequency distributions. Springer.
Baayen, H., Vasishth, S., Kliegl, R., & Bates, D. (2017). The cave of shadows: Addressing the

human factor with generalized additive mixed models. Journal of Memory and Language,
94, 206-234..

Ch. 11: Logistic regression

59

Berger, A., Della Pietra, S. A., & Della Pietra, V. J. (1996). A maximum entropy approach to
natural language processing. Computational Linguistics, 18 (4), 381-392.

Cedergren, H., & Sankoff, D. (1974). Variable rules: Performance as a statistical reflection of
competence. Language, 50, 333-355.

Clark, M. (2013). Generalized additive models: Getting started with additive models in R.
Center for Social Research, University of North Dame, Notre Dame, IN, USA, 13.

Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K.
(1996). Rethinking innateness: A connectionist perspective on development. MIT Press.

Evert, S., & Baroni, Marco (2007). zipfR: Word frequency distributions in R. Proceedings of
the 45th Annual Meeting of the Association for Computational Linguistics, Posters and
Demonstrations Sessions (pp. 29-32). Prague, Czech Republic.

Fasiolo, M., Wood, S. N., Zaffran, M., Nedellec, R., & Goude, Y. (2021). qgam: Bayesian
nonparametric quantile regression modeling in R. Journal of Statistical Software, 100(9), 1-
31.

Friedman, J., Hastie, T., Simon, N., & Tibshirani, R. (2017). glmnet. R package.
Hartig, F. (2022). DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed)

Regression Models. R package.
Hayes, B., & Wilson, C. (2008). A maximum entropy model of phonotactics and phonotactic

learning. Linguistic Inquiry, 39, 379-440.
Heinze, G., Ploner, M., Dunkler, D., & Southworth, H. (2017). logistf. R package.
Johnson, K. (2008). Quantitative methods in linguistics. Wiley.
Johnson, D. E. (2009). Getting off the GoldVarb standard: Introducing Rbrul for mixed‐effects

variable rule analysis. Language and Linguistics Compass, 3(1), 359-383. Software
available at http://www.danielezrajohnson.com/rbrul.html.

Labov, W. (1969). Contraction, deletion, and inherent variability of the English copula.
Language, 45, 715-762.

Lo, S., & Andrews, S. (2015). To transform or not to transform: Using generalized linear mixed
models to analyse reaction time data. Frontiers in Psychology, 6.

Mehta, C. R., & Patel, N. R. (1995). Exact logistic regression: Theory and examples. Statistics
in Medicine, 14(19), 2143-2160.

Menard, S. (2000). Coefficients of determination for multiple logistic regression analysis. The
American Statistician, 54(1), 17-24.

Menard, S. (2004). Six approaches to calculating standardized logistic regression coefficients.
The American Statistician, 58 (3), 218-223.

Mendoza-Denton, N., Hay, J., & Jannedy, S. (2003). Probabilistic sociolinguistics: Beyond
variable rules. In R. Bod, J. Hay, & S. Jannedy (Eds.) Probabilistic linguistics (pp. 97-
138). Cambridge, MA: MIT Press.

Ch. 11: Logistic regression

60

Myers, J. (2009). The design and analysis of small-scale syntactic judgment experiments.
Lingua, 119, 425-444.

Myers, J. (2012a). Testing adjunct and conjunct island constraints in Chinese. Language and
Linguistics, 13 (3), 437-470.

Myers, J. (2012b). Testing phonological grammars with lexical data. In J. Myers (Ed.) In
search of grammar: Empirical methods in linguistics (pp. 141-176). Language and
Linguistics Monograph Series 48. Taipei, Taiwan: Language and Linguistics.

Myers, J. (2016). Knowing Chinese character grammar. Cognition, 147, 127-132.
Myers, J., & Tsay, J. (2015). Trochaic feet in spontaneous spoken Southern Min. In Hongyin

Tao, Yu-Hui Lee, Danjie Su, Keiko Tsurumi, Wei Wang, & Ying Yang (Eds.), Proceedings
of the 27th North American Conference on Chinese Linguistics, Vol. 2, 368-387. Los,
Angeles: UCLA.

Pampel, F. C. (2000). Logistic regression: A primer. Sage.
Raaijmakers, J. G. W., Schrijnemakers, J. M. C., & Gremmen, F. (1999). How to deal with

“the language-as-fixed-effect fallacy”: Common misconceptions and alternative solutions.
Journal of Memory and Language, 41, 416-426.

Speelman, D. (2014). Logistic regression: A confirmatory technique for comparisons in corpus
linguistics. In D. Glynn & J. A. Robinson (Eds.) Corpus methods for semantics:
Quantitative studies in polysemy and synonymy (pp. 487-534). Amsterdam: John
Benjamins.

Tremblay, A., & Newman, A. J. (2015). Modeling nonlinear relationships in ERP data using
mixed‐effects regression with R examples. Psychophysiology, 52(1), 124-139.

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th edition).
Springer.

Warnes, G. R., Bolker, B., & Lumley, T. (2014). gtools. R package available at http://cran.r-
project.org/web/packages/gtools/index.html

Warton, D. I., & Hui, F. K. (2011). The arcsine is asinine: The analysis of proportions in
ecology. Ecology, 92(1), 3-10.

Winter, B. (2020). Statistics for linguists: An introduction using R. Routledge.
Winter, B., & Wieling, M. (2016). How to analyze linguistic change using mixed models,

Growth Curve Analysis and Generalized Additive Modeling. Journal of Language
Evolution, 1(1), 7-18.

Wood, S. (2006). Generalized additive models: An introduction with R. CRC Press.
Xu, Y., Gandour, J. T., & Francis, A. L. (2006). Effects of language experience and stimulus

complexity on the categorical perception of pitch direction. Journal of the Acoustical
Society of America, 120(2), 1063-1074.

Zamar, D., McNeney, B., & Graham, J. (2007). elrm: Software implementing exact-like
inference for logistic regression models. Journal of Statistical Software, 21(3).

