
Chapter 5
Correlation and modeling

James Myers

2022/3/22 draft

1. Introduction

 Remember how in the first chapter I said there were four basic jobs that statistics does?
So far we’ve looked at only two of them: summarizing data and computing probabilities. Now
it’s time to look at the third: modeling. Informally speaking, a statistical model is like a model
in the ordinary sense of the word: a toy version of something that captures the essence of that
something, like how a model car looks (and maybe even runs) like a real car, but is a lot simpler.
You could also say that statistical modeling sort of combines the jobs of summarizing and
computing probabilities, since a model is intended to be the most likely summary description
of your data (remember that likelihood is the probability of an analysis, given a data set).
 Modeling itself is related to another familiar idea: correlation (相關). Things are
correlated if they tend to go together, or even (maybe somewhat counterintuitively) if they tend
to avoid each other. If you usually see Mary when you see John, then their appearances are
correlated, but you can still say their appearances are correlated if you almost never see Mary
and John together.
 In this chapter we’ll start with correlation (the simpler idea), then move on to basic
statistical models directly related to correlation. As we’ll see in later chapters, almost all
statistical tests can be thought of in modeling terms, even if it’s impossible to see them in terms
of simple correlation, so modeling is the more useful, general idea. Consistent with our simple
goals, the type of correlation we’ll look at here involves our old friend the normal distribution,
and thus we’ll be doing a kind of parametric statistics. This type of correlation will turn out to
be closely related to models called linear models, since they model data in terms of straight
lines. But at the end of the chapter we’ll get our first taste of nonlinear models as well.

2. Correlation

 Two variables show a correlation (相關) if change in one is related to change in the other.
Crucially, if X is correlated with Y, it does not necessarily mean that X causes Y: there’s an
old saying in statistics that “correlation does not imply causation” (「相關不蘊涵因果」). Why
not? Well, even assuming the correlation between X and Y is “real” and not an accident, it
might be that Y actually causes X, or that both X and Y are caused by some other thing Z. For
example, think about this: child vocabulary size is correlated with height! Do you see why? A

Ch. 5: Correlation and modeling

2

tiny little baby knows almost no words, but a tall preteen knows thousands. But does this mean
that height somehow causes word learning, or even the other way around? Obviously not.
Actually, the correlation between vocabulary size and height arises because kids learn words
while their bodies are growing, so both of these variables are causally connected with age, not
with each other.
 The correlation ≠ causation principle appears everywhere in science, and you have to be
very careful not to be fooled, because once again, to aid in our survival evolution seems to have
shaped our brains to see causation everywhere, even when it’s merely correlation. News reports
of epidemiological (流行病學) studies, which use corpora of existing medical data rather than
controlled experiments, are especially bad about mistaking correlation for causation. For
example, if it turns out that people who sleep more than nine hours a day tend to have shorter
lives, does this mean that if you decide to sleep less than nine hours a day you’ll live longer?
Not necessarily, since many of the people in the database may have been sleeping a lot because
they were already sick!
 Because of this logical problem, the great statistician Ronald Fisher (remember him?)
refused to believe that smoking causes lung cancer when the first epidemiological studies
started coming out in the 1950s (Salsburg, 2001). Maybe, he said, there is a gene that somehow
makes people like to smoke and coincidentally also causes cancer! (He himself was a heavy
smoker, but that was surely just a coincidence!) We’re now sure that smoking really does
increase the risk of lung cancer because of experimentation, which not only shows that test
animals will develop lung cancer more often if forced to “smoke” than their genetically
identical peers (a counterfactual argument), but also reveals the step-by-step biochemical
mechanisms explaining how smoking can cause cancer. Experiments are thus often considered
the “gold standard” of scientific testing. Unfortunately, they’re not always possible (how would
you run an experiment in astronomy?). This is true in linguistics too. For example, the ideal
test of language innateness would be to raise a set of identical twins under a variety of
environmental conditions to see what happens, but this is obviously unethical. The closest we
can come to studying genetic factors in language is to do well-designed (but perhaps cruel)
experiments on language-like behavior in animals, while for human beings, we have to be
satisfied with so-called natural experiments, where we study how people naturally vary in
their genes, in their linguistic experience, and in their language abilities, and look for
correlations among these variables (see Fisher & Vernes, 2015, for a review).
 When there’s no choice but to work with a pre-existing corpus, the best a researcher can
do is argue for an explanatory mechanism that makes sense of the correlation, and then try to
test it by removing (or statistically controlling for) as many confounding variables (混雜變

量) as possible. For example, if we want to see if a child’s height really does “cause”
vocabulary to grow, we should also include age in the analysis to see if it predicts vocabulary
size better than height (and obviously it will, showing that our causal hypothesis was wrong).

Ch. 5: Correlation and modeling

3

For a rich (but complex) proposal for how to make causal inferences from quantitative data,
see Pearl (2009).
 If correlation does not imply causation, what does it imply? Well, if X and Y are correlated,
then this means that you can use X to predict Y, and vice versa (not necessarily in the sense
of predicting the future, but in the sense of learning something you didn’t know before). So if
X and Y are perfectly correlated, then any change in X will let you predict perfectly how much
Y will change, and if the correlation is weaker but not totally absent, then your predictions are
weaker but not totally worthless. Even though it doesn’t demonstrate causation, correlation is
still a very useful thing!
 First we’ll look at some simple examples, then we’ll look at the math.

2.1 Plotting correlations

 Before we play with some semi-realistic data, let’s look at some totally fake data just to
get some basic ideas more clear. So download the file scatterplots.txt, which contains nine set
of fake data, arranged in pairs: AX and AY go together, BX and BY go together, and so on up
to IX and IY. Here we are, getting the file:

fakecor = read.delim("scatterplots.txt")
head(fakecor)

 AX AY BX BY CX CY DX DY EX EY FX FY GX GY HX HY IX IY

1 1 0.02107742 20 0.2127149 1 20 1 0.28822329 1 1 1 1.25 1 6.21883 1 1 1 1

2 2 3.28538012 19 3.8059888 2 14 2 0.7672622 2 4 2 2.5 2 8.797966 2 32 1 2

3 3 3.32033233 18 3.4291069 3 5 3 0.03418744 3 3 3 3.75 3 11.948945 3 243 1 3

4 4 3.70397685 17 4.1898443 4 2 4 2.6159561 4 8 4 5 4 15.579394 4 1024 1 4

5 5 6.24618761 16 7.1616671 5 9 5 2.00192211 5 5 5 6.25 5 19.500477 5 3125 1 5

6 6 5.8660397 15 6.001156 6 8 6 2.89600024 6 12 6 7.5 6 23.432229 6 7776 2 1

 We’re going to work with these variables in pairs, including calculating their correlations
with the R function cor() (explained below). But R can’t see these variables directly, since
they’re inside the fakecor object:

cor(AX, AY)
Error in is.data.frame(y) : object ‘AY’ not found

 We could refer to them using the $ operator, for example:

cor(fakecor$AX, fakecor$AY) # I'll explain this number in a minute
[1] 0.9772931

 Or we could refer to them with an R function called with(), which makes things a bit
easier to read:

Ch. 5: Correlation and modeling

4

with(fakecor, cor(AX, AY))
[1] 0.9772931

 But to save even more typing, we’re going to do what we said in an earlier chapter that
we should try not to do: using R’s attach() function to make the column variables visible to
the workspace:

attach(fakecor) # Now we can refer to all of the variables throughout the chapter
cor(AX, AY)
[1] 0.9772931

 We’ll just have to remember to detach() the data frame if we ever need to work with any
other variables with the same names (including those inside other data frames).
 Anyway, enough R syntax - let’s get back to the actual statistics. As usual with statistical
concepts, we should first try to get an intuitive feeling for what’s going on. As I’ve emphasized
before (and will continue to do), plotting is the best way to get an intuitive feel for your data,
and in this case what we want is a scatter plot (散布圖，散點圖), because each dot represents
a pair of values (e.g., the age and vocabulary size of one child). To make a scatter plot in Excel,
we just select the columns with the variables we want to put into the plot, find the scatter plot
icon, and clean it up (remove the useless legend box on the right, maybe change the colors of
the dots to be more printable, add meaningful labels for the x-axis and y-axis). To do this in R,
we use the plot(X,Y) function, where X and Y are our two variables (X will go on the x-axis
and Y on the y-axis).
 Here’s R makes simple scatter plots for the fake data sets A and B, creating Figure 1:

plot(AX, AY, main="A") # Left of Figure 1
plot(BX, BY, main="B") # Right of Figure 1

Figure 1. Super-fake data sets A and B

Ch. 5: Correlation and modeling

5

 In plot A, the X and Y axis variables are positively correlated: as X goes up, Y tends to
go up too. In plot B, they are negatively correlated: as X goes up, Y tends to go down. In both
cases, this is merely a tendency: the dots still form clouds, not perfect straight lines. Still, both
of these correlations seem to be pretty strong: the clouds of dots are quite thin. Try plotting the
rest of the data sets (CX and CY and so on) to see what they look like.
 Plots are all well and good for pleasing our monkey brains, but how do we quantify this
stuff? One of the earliest inventions (discoveries?) in inferential statistics was a quantitative
measure of correlation. This was developed by that statistical genius Karl Pearson (the
“Saussure” of statistics), and so this quantitative measure is named after him: Pearson's
correlation coefficient (皮爾遜相關係數), symbolized as r. (The “r” stands for regression
[迴歸], which we’ll discuss later in this chapter.) If the r value is 0, there is no correlation at
all: the cloud of dots is essentially a big blob. If the r value is positive, this indicates a positive
correlation, with higher r values indicating a stronger (less cloudy) correlation, up to a
maximum of r = 1, which indicates a perfect straight line of dots rising up from the left to right.
Similarly, if r is negative, the correlation is negative, with r = -1 indicating a perfect straight
line of dots falling down from left to right.
 In Excel, Pearson’s r can be calculated using the cell function =CORREL(X,Y), where
X and Y represent two equal-length ranges (e.g., two columns, as we have here). In R, you can
use the function cor(x,y), which works the same way (though as usual, this function, and other
R correlation functions, has other magic powers, as we’ll see soon):

cor(AX,AY)

[1] 0.9772931

cor(BX,BY)

[1] -0.9716553

 Those results look pretty reasonable: both values are close to |1|, since both clouds are
close to straight lines. Try computing Pearson’s r for the other data sets, and compare the results
with the plots to see if they seem reasonable to you. You might also want to look at the figure
in https://en.wikipedia.org/wiki/Correlation_and_dependence, showing a wide variety data
cloud shapes and their associated r values. Basically, what you’ll see is that the more line-like
the dots are, the closer r is to 1 (if rising) or -1 (if falling).
 Because r can never go below -1 or above +1, the style rules of the American Psychology
Association (APA) say that you shouldn’t give the initial zero in an r value (just as with p
values, which can never go below 0 or above +1). So if we were reporting the above values,
we might write (rounding them a bit too) as r = .98 and r = -.97.

https://en.wikipedia.org/wiki/Correlation_and_dependence

Ch. 5: Correlation and modeling

6

 Remember that I said that the correlation of X and Y implies that we can predict Y from
X (or vice versa)? We can quantify this predictability very easily. Namely, if X and Y have a
correlation coefficient of r, then we can say that the r2 is the proportion of the variance of Y
(remember, variance is the square of the standard deviation: s2) that is explained or predicted
or accounted for by the variance of X. For this reason, r2 is sometimes called the coefficient of
determination (確定係數). Note that before you square it, r is not a proportion, since it can
be negative, but r2 can be interpreted as a proportion, since it must lie between 0 and +1. Note
also that squaring means that r2 is smaller than |r|. For example, let’s say we collect a bunch of
kids of various ages and measure both their height (X) and their vocabulary size (Y), and we
get r = .6. In this case, the coefficient of determination r2 = .36, which means that the variance
in height only predicts around 36% of the variance in vocabulary size (not 60%).

2.2 Are common words shorter?

 Now let’s look at a more realistic linguistic example. Remember that one of Zipf’s laws
says that the more common a word is, the shorter it tends to be, in terms of having fewer letters
(in spelled words in a language like English) or fewer phonemes or syllables (in any language,
presumably). It turns out that word frequency also shortens the phonetic duration of words,
even for words that have exactly the same number of syllables and phonemes. For example,
the English words time (時間) and thyme (麝香草) are listed in the dictionary as perfect
homophones (they’re just spelled differently), but Gahl (2008) found that when people say
them, the word time is acoustically a little bit shorter. Why? Statistical analysis of many such
pairs showed that the key factor was word frequency: highly practiced words like time are
articulated slightly more efficiently than more rarely needed words like thyme.
 So here we have a correlation: as the frequency of a word goes up, the duration of a word
goes down. Thus we can predict approximately how long a word is based on how frequent it
is. Since one variable goes up while the other goes down, this is a negative correlation. This
contrasts with age and vocabulary size, which show a positive correlation, since when age
goes up, vocabulary size goes up too.
 Hm, I wonder if the frequency-duration correlation is also true in a fake data set I created
specifically to simulate this real-world pattern? Let’s find out! Download the file freqdur.txt
and play along....
 What’s in there? Whether you open it in Excel or R, you’ll see that it’s got five columns,
called Word, AoA, Fam, Freq, and Dur. You can probably tell that Word is just the
identification numbers for a bunch of words, Freq is the token frequency of these words in
some corpus, and Dur must be ... hm... maybe... duration? Yes, it’s duration, in milliseconds
(ms). The mean duration is around 249 ms (check yourself!), which is pretty typical for real-

Ch. 5: Correlation and modeling

7

world syllables in lots of languages, including Mandarin and English, and the distribution is
also normal (check yourself!), which is also realistic.
 What about the other variables? “AoA” stands for age of acquisition, or the age at which
you first learned a word, computed in some sort of pretest on a large number of people who
didn’t participate in the duration experiment (the values here are supposed to look like means
on a seven-point scale, from 1 = youngest to 7 = oldest). In real life, this variable really does
affect word processing independent of word frequency (e.g., Morrison & Ellis, 1995). “Fam”
stands for familiarity, representing how familiar a word seems to you (likewise collected in a
separate pretest, on a seven-point scale from 1 = least familiar to 7 = most familiar). Again, in
the real world, this variable affects word processing independently of word frequency (e.g.,
Gernsbacher, 1984).
 Psycholinguistically, these three variables are totally different: frequency reflects how
much experience you have with a word, age of acquisition reflects how young you were when
you first learned it, and familiarity reflects your feelings about using the word. Thus these three
numbers won’t be perfectly correlated. For example, it’s common for kids to talk about zoo
animals, but since adults don’t talk about them so much, words like panda are not particularly
high-frequency. Similarly, some words can be familiar even if they’re kind of rare, perhaps
because they are so vivid. Yet obviously these three variables must be at least somewhat
correlated as well, since if you learned a word young, you’ve probably encountered it more
often (higher frequency) than a word you learned much later in life, and if a word is very
frequent, it’s probably quite familiar too.
 So we’re in trouble right from the start: there are many confounding variables, making it
hard to claim that any correlation between frequency and duration is meaningful, let alone a
reflection of a causal relation.
 By the way, this data set is only partially fake. The values for AoA, Fam, and Freq come
directly from the real English words in the MRC Psycholinguistic Database (Coltheart, 1981:
http://websites.psychology.uwa.edu.au/school/MRCDatabase/uwa_mrc.htm). For example, in
the MRC database, the word abandonment has exactly the same AoA, Fam, and Freq values
that I list for Word 1. But the database has no information about duration, and anyway I’m
pretending that these are monosyllabic CVC words, so I just made up the values for Dur. When
I created the Dur variable, I did so in a clever way, not only so that the mean and distribution
shape would be realistic, but also so that it would be correlated with (some of) the other values
(I’ll explain in a later chapter exactly how I did this, since as we’ve already seen in earlier
chapters, it’s sometimes useful to simulate data).
 This means that the confounds among AoA, Fam, and Freq are genuine, and if we really
did have real Dur values, it would indeed be difficult to tell which of these three lexical
variables was predicting duration. I’ll discuss this confound more later in this chapter, and we’ll
learn how to deal with such confounds in a later chapter (the same one where I explain how I

http://websites.psychology.uwa.edu.au/school/MRCDatabase/uwa_mrc.htm

Ch. 5: Correlation and modeling

8

created Dur), but for now, let’s just look only at Freq and Dur (as many psycholinguists really
do, since frequency is a lot easier to get, right from a corpus, than age of acquisition or
familiarity, which require running extra experiments).
 OK, let’s get started:

fd = read.delim("freqdur.txt")

 Here’s something cute that R can do:

plot(fd)

 What the heck is that? Look closely: it’s all possible scatter plots for all possible pairs of
numeric vectors (columns) in the fd data frame! This is another property of an object-oriented
programming language like R: some functions (e.g., plot()) change their meaning depending
on their arguments (here, a data frame), sort of like a human language (e.g., see in see a movie
and see a friend really don’t mean the same kind of “seeing”).
 The first vector in fd just lists the arbitrary identification numbers for each word, so
correlations with that vector don’t make any sense. Let’s remove it and plot the rest (in Figure
2). Any of the following commands will work; they all produce exactly the same output (since
it never hurts to learn more about basic R vector operations). To do this in Excel, we would
have to make each plot separately, in both directions (e.g., with Freq on the x-axis and Dur on
the y-axis, as in the third plot from the left on the last row, and also with Dur on the x-axis and
Freq on the y-axis, as in the fourth plot from the left on the third row down).

plot(fd[,2:5]) # X[,Y] means "in data frame X, choose all rows, but only columns Y"
plot(fd[,-1]) # Here, -Y means "everything except Y"
plot(fd[,c("AoA","Fam","Freq","Dur")]) # You can use the column names too

Figure 2. All scatter plots

Ch. 5: Correlation and modeling

9

 We can also compute all possible Pearson’s correlation coefficients the same simple way,
applying the cor() function to the whole data frame. Note that the correlation of each variable
with itself is r = 1 (are you surprised? I hope not), and the correlations are symmetric: so
whether we compute the correlation of Freq with Dur or compute the correlation of Dur with
Freq, we get r = -.064 (rounding it a bit, and dropping off the initial zero).

cor(fd[,-1]) # The simplest syntax

 AoA Fam Freq Dur
AoA 1.00000000 -0.68834211 -0.24143218 0.08004799
Fam -0.68834211 1.00000000 0.45231824 -0.06832922
Freq -0.24143218 0.45231824 1.00000000 -0.06393663
Dur 0.08004799 -0.06832922 -0.06393663 1.00000000

 Hm. That is an extremely tiny correlation. And look: Freq has much larger correlations
with Fam (r = .45) and with AoA (r = -.24). This is the problem of confounded variables,
staring right at us. Returning to our focus on Freq and Dur, at least the correlation coefficient
is negative: higher frequencies mean shorter durations. But is such a tiny correlation
meaningful in any way? It’s impossible to see any negative trend in the dots in that tiny scatter
plot.
 But wait a minute. Isn’t frequency notoriously skewed? Look at how normal the dots are
for the Dur plots: many dots in the middle, few on the edge. But the dots along the Freq axis
look quite skewed, and indeed, it’s easy to confirm that this variable isn’t at all normal (see
Figure 3):
qqnorm(fd$Freq)
qqline(fd$Freq)

Figure 3: Freq is not normally distributed

Ch. 5: Correlation and modeling

10

 So what? Well, as we’ll make more explicit shortly, the logic of Pearson’s r builds on the
logic of z scores, and therefore computing p values for r is most reliable if the variables along
both the x-axis and y-axis are normally distributed (with some caveats, as we’ll also see soon).
That’s why it’s considered a parametric test. If you report an r value involving a frequency,
your readers will expect you to lognorm frequency first. So let’s do that (Figure 4):

fd$LogFreq = log(fd$Freq) # Excel too (remember =LOG() is base 10, not base e)
qqnorm(fd$LogFreq)
qqline(fd$LogFreq)

Figure 4. LogFreq is much more normally distributed

 Let’s see if this transformation helps improve the correlation with duration. Note that in
my new plot in Figure 5, I put frequency on the x-axis and duration on the y-axis, since I want
to see if frequency helps predict (some of the variation in) duration.

plot(fd$LogFreq, fd$Dur, xlab="Log frequency", ylab="Duration (ms)") # Excel too
cor(fd$LogFreq, fd$Dur)

[1] -0.07608045

Ch. 5: Correlation and modeling

11

Figure 5. Correlation of log frequency with duration

 Can you see the dots going down slightly, consistent with r = -.08? Yeah, I can hardly see
it either. But at least the r value and the plot are consistent with each other: a blobby cloud of
dots and an r value quite close to zero. Indeed, the coefficient of determination r2 = .00579, so
only about 1/2 % of the variance in duration is predictable from the variance in log frequency.
 Disappointing, but real life is also disappointing sometimes. Hm, but maybe even this tiny
r value is statistically significant...? That is, even though the dot cloud is pretty blobby, maybe
it’s significantly less blobby than we’d expect by chance alone. R has a simple function for
testing this: cor.test(). It works just like cor(), except that it also gives you a p value (Excel
doesn’t have a simple way to do this, though we’ll see later how we can make Excel do it
anyway):

cor.test(fd$LogFreq, fd$Dur)

 Pearson’s product-moment correlation

data: fd$LogFreq and fd$Dur
t = -3.1339, df = 1687, p-value = 0.001754
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.12332976 -0.02848698
sample estimates:
 cor
-0.07608045

 The correlation (cor = r) is still the same (-0.07608045), but now we also get a p value
(0.001754). It’s less than .05, so it seems that the almost invisible Freq and Dur correlation is
unlikely to have happened by chance. (This is not at all unusual, by the way: in this complex

Ch. 5: Correlation and modeling

12

interactive world we live in, almost everything is correlated with everything else, even if only
by a tiny amount: https://www.gwern.net/Everything.)
 But how did cor.test() compute this p value? Why is there a t value in there too? And
where does r come from anyway? For the answers to these fascinating questions, read on!

2.3 The math of correlations

 Pearson’s key insight was that if we want to quantify the correlation between x and y, we
should build on the math of variation. Why? Because if x and y are correlated, then their
distributions should covary: one goes up while the other goes up, or one goes up while the
other goes down, in a semi-predictable way.
 Now think back about how to calculate the variance. Variance relates to the “average”
distance of all the data points in a distribution from the mean; or more properly, that’s what the
standard deviation is (s), and variance is the square of that (s2). In case you forgot, variance is
the sum of squares (SS: the sum of the square of the deviances, that is, each data point x minus
the mean M), divided by the degrees of freedom (df, which here is n - 1):

Sample variance: 𝑠𝑠2 = ∑(𝑥𝑥−𝑀𝑀)2

𝑛𝑛−1

 But now we don’t just have one variable and one distribution, but two variables (x and y)
and two distributions. Well, it’s lucky that we decided to define variance in terms of the sum
of squares rather than absolute values, since if for one distribution you sum up the squares of
the differences ((x-M)2), the natural thing to do with two distributions is to sum up the products
(積) from multiplying the differences: (x-Mx)(y-My) (remember from algebra class that xy
means x×y, avoiding the use of a symbol that confusingly looks like the letter x).
 This trick gives you something called the sum of products (SP). The x and y values are
paired (they represent two values from the same thing, e.g., the frequencies and durations of
the words in our example), so their sample sizes are the same: n. So we can just divide by df
again, which is still n-1. Dividing SP by df gives us the covariance (共變異數). Just as ordinary
variance represents the “typical” distance of the data points from the “center” of one
distribution, the covariance represents the “typical” distance of the dots in the scatter plot from
the overall “center” of the scatterplot (i.e., the point defined by (Mx, My) = mean(x), mean(y)),
as shown below. If you want, you can compute the covariance in Excel with =COVAR() and
in R with cov().

Sample covariance: 𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥 =
∑�(𝑥𝑥−𝑀𝑀𝑥𝑥)�𝑦𝑦−𝑀𝑀𝑦𝑦��

𝑛𝑛−1

https://www.gwern.net/Everything

Ch. 5: Correlation and modeling

13

 This formula already does some of what we want from a measure of correlation. In
particular, it gives positive values when the xs and ys in each pair tend to be on the same side
of their respective means (e.g., when it’s usually the case that yi > My for xi > Mx), but gives
negative values when they tend to be on opposite sides (e.g., when it’s usually the case that yi
< My for xi > Mx). Moreover, if there is no relationship between x and y, forming a big blob of
dots, then (x - Mx)(y - My) will be positive and negative about an equal amount of the time, so
when you sum them all up, you’ll get a covariance close to 0.
 Unfortunately, while the sign (+ vs. -) of covariance makes sense, its magnitude (size in
absolute terms, ignoring sign) isn’t very useful. This is because the actual value of the
covariance depends on the magnitude of Mx and My, which aren’t relevant to the intuitive idea
of correlation. For example, intuitively, x = c(1,2) should have the same correlation with y =
c(10, 20) as with z = c(100, 200), namely a perfect correlation, since x forms a perfect line both
with y and with z. However, as you can see if you compute it in R or Excel, the covariance of
x and y is 5, while the covariance of x and z is 50, simply because the mean of y is smaller than
the mean of z.
 What we want is a standardized correlation measure, and as with the computation of the
z score, we get it by dividing our “average” (actually the covariance here) by the standard
deviations of the two samples (sx and sy). Once we do that, we finally derive r: Pearson's
correlation coefficient (皮耳森相關係數). Since covariance itself is sort of related to the two
samples’ standard deviation, a bit of algebra allows you to compute r either by dividing
covariance by both sample standard deviations, or by dividing the sum of the products of z
scores from the two samples by the degrees of freedom:

Pearson’s correlation coefficient: 𝑟𝑟 = 𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥
𝑠𝑠𝑥𝑥∙𝑠𝑠𝑦𝑦

=
∑𝑧𝑧𝑥𝑥𝑧𝑧𝑦𝑦
𝑛𝑛−1

 Because of how it’s computed, Pearson’s r makes four important assumptions. First, as in
most statistical tests, it assumes that the data points are independent of each other (we’ll come
back to this assumption shortly). Second, the logic of Pearson’s correlation means that r is only
close to -1 or 1 when the correlation of data points is linear (線性), forming a straight line. For
example, it seems that each scatter plot in Figure 6, derived from the data set scatterplots.txt,
involves a function predicting Y from X perfectly. However, when we calculate the Pearson
correlation coefficient, we find that only the straight line gives you r = 1: (F: r = 1; G: r = -.14;
H: r = .83).

Ch. 5: Correlation and modeling

14

Figure 6. Linear vs. nonlinear relations

 Third, Pearson’s r is a parametric statistic, so both x and y are assumed to be normally
distributed. This follows from using the mean in the computation. Thus Pearson’s r is affected
by outliers, as you can see in the scatter plot in Figure 7 (again using data from scatterplots.txt):
because of that one dot in the upper right corner, the correlation is the very high r = .90 (try
it!), even though most of the data is in a square-ish blob in the lower left corner, so it’s
ridiculous to claim that we can predict much of anything about y from x (and certainly not r2 =
80%).

Figure 7. Don’t use Pearson’s correlation here

 The fourth assumption of Pearson’s correlation coefficient is that as x varies, the variance
in y should be roughly constant (the technical name for this, which we’ll see again later, is
homoscedasticity: homo = same, scedastic = scattering). Hence data like those plotted in
Figure 8 (again from scatterplots.txt) are also problematic to analyze with r or r2, since the
variance in y increases as the value of x gets higher (that is, the “line” of dots gets vertically
wider as you move from left to right)

Ch. 5: Correlation and modeling

15

Figure 8. Don’t use Pearson’s correlation here either

 Since we’re discussing math, you might wonder why the coefficient of determination r2
represents the proportion of variance in y that can be predicted by the variance in x. Well, it’s
just algebra; if you’re really curious, you can check Johnson (2008, pp. 64-66) for a pretty
simple explanation (though you should read the section below on the math of regression first).
 Remember our frequency-duration example? I haven’t forgotten. Remember that r was
pathetically tiny, but it still turned out to be statistically significant? How was this tested?
 Well, through the Magic of Mathematics (actually, very simple algebra), the relationship
between r and z (as in the equation for Pearson’s correlation coefficient) means that r is also
related to t, and then we can use a kind of t test to give us p values. The conceptually simplest
version of the formula relating t and r looks like this:

t value associated with r value: 𝑡𝑡 = 𝑟𝑟
√1−𝑟𝑟2/√𝑛𝑛−2

 (df = n-2)

 This formula actually relates to the logic of z scores and t values that we discussed in the
probability chapter. Compare it with the formula we used for the one-sample t test:

t test statistic: 𝑡𝑡 = 𝑀𝑀−𝜇𝜇

𝑠𝑠/√𝑛𝑛

 Instead of M-μ of the t test formula, we now have r; instead of s we have √(1-r2); instead
of n we have n-2. All of these substitutions kind of make sense, if you think about them. First,
r means r-0, that is, our observed correlation coefficient compared with the null hypothesis of
no correlation (like M-μ); since r2 represents the proportion of the variance explained by the
correlation, 1-r2 is the proportion not explained by the correlation, so it’s a measure of “noise”

Ch. 5: Correlation and modeling

16

variance (like s2), so the square root makes it like the standard deviation (like s); and n-2 is
similar to n (and here it’s the df). We use df = n-2, rather than the n-1 used in the one-sample t
test, basically because we now we have two distributions (x and y) (though as I warned you
earlier, it’s safer to just look up the df, since df logic is never obvious).
 The file correl-sig.xls computes all of this automatically using basic Excel cell functions,
and it also includes another test (from Woods et al., 1986, pp. 165ff) for comparing two
independent correlations; you can click on the cells to see what equations are being used.
 As usual for doing real statistics, it’s simpler to use R’s built-in function for this job, which,
as we’ve seen, is called cor.test(). For example, if we go back to our highly linearly correlated
data set B in scatterplots.txt, we can run the following command, which makes R print out the
following report (as with the t.test() reports we saw in an earlier chapter, we’ll explain the
confidence interval part in a later chapter). This function gives you the two-tailed p value by
default, and that’s what you should report anyway, since it would be equally amazing to
discover that r is very close to 1 or very close to -1.

cor.test(BX,BY)

 Pearson’s product-moment correlation

data: BX and BY
t = -17.438, df = 18, p-value = 1.012e-12
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.9889498 -0.9282697
sample estimates:
 cor
-0.9716553

 Wow! That p value is super-tiny: p = .000000000001012.... To report this, we might write:
“There was a significant correlation between BX and BY (r(18) = -.97, p < .0001)”. There’s
no need to mention “Pearson’s”, since it’s the most common kind of correlation, and you don’t
even need to mention t, since due to the above formula relating t and r, r itself is also a test
statistic (i.e., a key value in a statistical analysis), and along with the degrees of freedom (18
= n-2= 20-2), the reader gets all the information needed to understand your statistical result.
 As usual in R, cor.test() doesn’t just print output, but creates an object too. Thus if we
want, we can extract values from this object (instead of copy/pasting them from the above text
report). Say we named my.test = cor.test(BX,BY). Then r is my.test$estimate, t is
my.test$statistic, df is my.test$parameter, and p is my.test$p.value. (Again as usual with R,
I learned all this by typing ?cor.test, then looking at the Value section, which describes the
object created by this function.)

Ch. 5: Correlation and modeling

17

 I guess we should confirm that R’s reported values match our formula above. Try running
the following commands:

n.B = length(BX)
r.B1 = cor(BX,BY)
r.B2 = sum(scale(BX)*scale(BY))/(n.B-1) # Simple version of r formula
round(r.B1,10) == round(r.B2,10) # Rounding to remove tiny computation differences
t.B1 = r.B1/sqrt((1-r.B1^2)/(n.B-2))
t.B2 = r.B2/sqrt((1-r.B2^2)/(n.B-2))
round(t.B1,10) == round(t.B2,10)
p.B1 = 2*pt(-abs(t.B1),df=n.B-2)
p.B2 = 2*pt(-abs(t.B2),df=n.B-2)
round(p.B1,10) == round(p.B2,10)

 Because of the cozy relationship among z, t, and r, and because the normal distribution
keeps reappearing by mathematical magic all over the place, the same thing turns out to be true
of r: Pearson’s correlation is everywhere in statistics! As we’ll see in the next section,
regression analysis is a generalization of correlations, and as we’ll see in later chapters, many
other tests, like the unpaired t test, the paired t test, and all sorts of ANOVA, have the
mathematics and concepts of correlation or regression built into them.
 Let’s end this section by returning to the p value for the frequency-duration correlation:

cor.test(fd$LogFreq, fd$Dur)

 Pearson’s product-moment correlation

data: fd$LogFreq and fd$Dur
t = -3.1339, df = 1687, p-value = 0.001754
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.12332976 -0.02848698
sample estimates:
 cor
-0.07608045

 We could report this as r(1,687) = -.08, p < .01. But look at the size of that df! Our sample
is huge. Remember the connection between statistical power and sample size? If there is any
pattern at all in your data, no matter how tiny, increasing the sample size enough will eventually
let you discover that the pattern is statistically significant. But the r2 value also reflects effect
size, that is, how “significant” the pattern is in a more practical sense, and here, r2 =
cor.test(fd$LogFreq,fd$Dur)$estimate^2 = .006, which is an extremely tiny effect, unlikely
to have much real-world implications: less than 1% of the variance in duration is predictable
from log frequency.

Ch. 5: Correlation and modeling

18

 Thus if our sample had fewer items, like only 100, it seems likely that this r value would
not have been significant. We can simulate this by randomly sampling from our sample, like
so (note the function subset(D,P) for choosing a subset of the data frame D with logical
property P, and the function is.element(A,B), which is true if A is an element of the set B):

set.seed(2) # So you get the same sample as I do
fd100.items = sample(fd$Word, 100, replace=T) # Randomly choose 100 of our words
fd100 = subset(fd, is.element(fd$Word, fd100.items))
cor.test(fd100$LogFreq, fd100$Dur)

 Pearson’s product-moment correlation

data: fd100$LogFreq and fd100$Dur
t = 0.51272, df = 94, p-value = 0.6093
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.1492567 0.2506417
sample estimates:
 cor
0.05280946

 Now p = .6 > .05: not significant at all.. This is yet another lesson that statistical
significance doesn’t necessary reflect real-world significance. We can report our finding as
reflecting something unlikely to be pure chance, but I doubt our readers will be very impressed.

2.4 Special applications of correlation math

 Even though correlations were originally invented to handle continuous, normally
distributed data, they may still make sense with other types of data. For example, suppose our
variables x and y are both binary variables, containing only the values 0 and 1. If we compute
Pearson’s r for these, we get something called the mean square contingency coefficient, or
more simply the phi coefficient, symbolized with the Greek letter φ or rφ. The phi coefficient
is what you might use to quantify the correlation of John and Mary’s appearances (mentioned
at the start of this chapter), counting appearances as 1 and absences as 0.
 A real-life application of the phi coefficient in linguistics is illustrated by Perruchet and
Peereman (2004), who used this measure to quantify phonotactics. Here x represented the
appearance of one phoneme in a word and y represented the appearance of another phoneme
in a word; 1 indicated that a phoneme was present in a word and 0 that it was not. That way, if
phonemes x and y often appear together, their φ value is closer to 1 (e.g., palatals and front
vowels in Mandarin) and if they “avoid” each other, φ is closer to -1 (e.g., velars and front
vowels in Mandarin).

Ch. 5: Correlation and modeling

19

 Another clever use of the logic of correlation is in the study of time series, where there is
a sequence of event outcomes (see, e.g., Bowerman & O’Connell, 1993). In most real-life time
series, we cannot say that each outcome is totally independent of every other event; it’s true
for coin flips (coins have no memories) but not for most other things. For example, some event
outcomes recur in cycles (e.g., Google searches for the term “Christmas” increase every twelve
months, then drop again) or are correlated with each other (e.g., in a corpus of spontaneous
speech, speakers who use a passive construction may be more likely to use another one shortly
afterwards). A simple method to study such violations of independence is to compute
autocorrelation, where the first variable x is the original time series, and the second variable
y is the exact same time series with a time lag.
 For example, recall my sad attempt to produce a sequence of 120 “random” 0s and 1s
(repeated below):

110101011001010110001101010100101010101000110100011010110101
001101101001100011011100110100001110101001100100110101101000

 If we define y as this series, then x will be the same series, just shifted backwards by one
digit, representing the key press just before each key press in y. You can exploit R’s vector
functions to create x in a clever way, and then we can use cor.test() to see how “random” my
key presses really were:

y = c(1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,0,0,1,1,0,1,
 0,0,0,1,1,0,1,0,1,1,0,1,0,1,0,0,1,1,0,1,1,0,1,0,0,1,1,0,0,0,1,1,0,1,1,1,0,0,1,1,0,1,0,0,0,0,1,1,
 1,0,1,0,1,0,0,1,1,0,0,1,0,0,1,1,0,1,0,1,1,0,1,0,0,0)
x = c(y[2:length(y)],y[1]) # Puts the first value of on the end (clever!)
cor.test(x,y)

 We get r(118) = -.33, p = .0002: clearly there was a very strong tendency for me to
alternate my hands (giving a negative autocorrelation).

3. Regression modeling

 If Pearson’s correlation coefficient is a measure of the line-likeness of a scatter plot,
shouldn’t we be able to draw this ideal line on the dots to see how close the dots get, sort of
how qqline() draws the ideal line in a Q-Q norm plot?
 Why yes, that’s just what we can do. You can compute the line using regression analysis
(迴歸分析). The weird name is yet another confusing accident of history: it was first coined
by Pearson’s predecessor Francis Galton (1822-1911), a British scholar with interests ranging
from biology to math to psychology (and he was a half-cousin of Charles Darwin too). Galton
noticed that tall parents tend to have normal-sized children, or more generally, that extremes

Ch. 5: Correlation and modeling

20

tend to “regress” (go back) to the mean over time. Pearson and others then extended the notion
of regression to the mean to the idea that if we could keep collecting data forever, the mean of
our sample would get closer to the “true” mean, so in a scatter plot more and more of the dots
would “regress” towards the “true” line at the heart of the dots. Thus in any particular sample,
when we draw a line through it, it’s an estimate of this ideal line.
 The line derived from paired data is called a regression line (迴歸線) or line of best fit
(最佳配適線). A related concept is a trend line (趨勢線), though this also includes wiggly
lines without any simple formula.
 Linear regression involves a linear (線性) equation like y = a + bx (we’ll review this
math later). Other types of regression analyses involve a logarithmic function (對數) like y =
a ln x, a polynomial function (多項式) like y = ax3 + bx2 + cx + d, a power function (乘冪)
like y = axb, an exponential function (指數) like y = aebx, and so on. In this book, we’ll mainly
focus on the first type (linear functions), but we’ll mention some of the others too.
 Let’s look at these lines, starting with how to plot them, then how to get Excel or R to
give us the regression equation and p values, and finally the math behind all of this.

3.1 Plotting a regression analysis

 What line(s) is (are) implied by Pearson’s r? This is so simple to plot that even Excel has
built-in tool for it. First make a scatter plot, then right-click the mouse on any of the dots, and
then choose Add Trendline (加上趨勢線: (R)). Note that you have the choice to add any of
the above types of regression lines (linear, logarithmic, polynomial, power, exponential,
moving average), with linear set as default.
 R can do this too, of course. I’ll first demonstrate the commands, and explain how they
work later. All you need to know for now is that lm() stands for “linear model”, that the a and
b in abline() (“a-b-line”) stand for the a and b in the linear equation y = a + bx, and that the
Y~X syntax represents an important kind of R object called a formula, here symbolizing the
linear equation (you pronounce Y~X as “Y varies as a function of X”). Try it yourself, and
judge whether you think that line is really the best way to fit a line into those dots, as shown in
Figure 9.

plot(AX,AY) # Fake data set A in scatterplots.txt
regress.line = lm(AY~AX) # Linear model predicting AY from AX
abline(regress.line) # Add the line to the existing plot

Ch. 5: Correlation and modeling

21

Figure 9. Fitting a line to fake data set A

 If we do the same thing to the frequency-duration data, we get Figure 10. Look closely,
you can see that yes, that trend line is indeed dropping a teeny-tiny amount.

plot(fd$LogFreq, fd$Dur, xlab="Log frequency", ylab="Duration (ms)")
abline(lm(Dur~LogFreq, data = fd)) # The data argument lets us avoid using $

Figure 10. Linear best-fit line for log frequency predicting duration

 One benefit of regression is prediction. Since the line is associated with an equation, we
can plug in any x, not just our actual x values, to get the best estimate for y (i.e., the y value of
the line for x). This allows us to make real-life predictions about y based on what we know
about x. Since this application is pretty common in business, Excel has a built-in cell function
for it: =FORECAST(new-x, known-y's, known-x's) will give you the y values of the

Ch. 5: Correlation and modeling

22

regression line given any x value. Excel also has a built-in prediction function for exponential
regression, also commonly used in business (and biology), called =GROWTH(). In the Land
of R, where things are more scientific and elegant than in the Land of Excel, there is a more
general function, predict(model, newdata), which generates predictions (y values) from any
model given a set of new x values. More importantly, I’ve also emphasized that regression is
the core of modeling, a key purpose of statistics.
 Models are everywhere! To start with a trivial illustration of this, R uses formula objects
like Y~X a lot. For example, in an earlier chapter we saw that you can count frequencies using
the table() function, but you can get the same results with the xtabs() (cross-tabulate) function.
A crucial difference is that xtabs() uses the syntax for formulas, with the dependent variable
Y missing because it’s always the frequency (i.e., the formula is just ~X):

super.word = unlist(strsplit("supercalifragilisticexpialidocious","")) # Split into letters
table(super.word)

super.word
a c d e f g i l o p r s t u x
3 3 1 2 1 1 7 3 2 2 2 3 1 2 1

xtabs(~super.word)

super.word
a c d e f g i l o p r s t u x
3 3 1 2 1 1 7 3 2 2 2 3 1 2 1

 As a more philosophical example of the importance of modeling, suppose your model and
my model both predict that as children get older, their vocabulary gets larger, but our models
differ in a crucial way: you claim that kids learn one new word a day (a linear model), whereas
I claim that each new word added to children’s vocabulary helps them learn two more (an
exponential model). Merely observing that vocabularies increase is not enough to distinguish
between these two models. Instead, we need to see which model gives a better fit to the actual
data.
 As an even more philosophical example, in the start of their book on minimalist syntax,
Epstein and Seely (2006) use a regression metaphor to explain why they prefer theories that
are simple (“minimalist”), even if they don’t seem to describe all the facts correctly. Building
on their argument, consider two possible trend lines for the fake data set A, one that’s linear
and one that’s a wiggly line touching every data point, as plotted in Figure 11. Note the lines()
command (I had to put the dot x and y values in order, using the order() function):

plot(AX,AY) # Plot those fake data points again
abline(lm(AY~AX), lwd=2,lty=1) # Thick solid line: linear fit to data
lines(sort(AX),AY[order(AX)],lty=2) # Thin dashed line: perfect fit to data

Ch. 5: Correlation and modeling

23

Figure 11. A metaphor for minimalist syntax

 The linear trend line doesn’t match any of the data points perfectly, and is quite far from
several of them, but it’s very simple and does a very good job at capturing the variance in the
data (r2 =.96, as we calculated before). By contrast, even though the wiggly line is designed to
hit every data point, it is very complicated and doesn’t offer any insights into what gives rise
to this particular pattern of dots. Hence a simple sort-of-right model is better than a complex
entirely-right model. It’s not just minimalist syntacticians who recognize this principle; the
dashed line above represents a situation that statisticians call overfitting, and this is considered
to be a bad thing. Among other things, the overfitted model makes no predictions: we have no
idea what y value it predicts if we stretched the x-axis beyond 20. By contrast, we can predict
exactly this value for the linear model very easily (e.g., for x = 25, the predicted value of y is
about 25, which makes sense if you look at the plot):

predict(lm(AY~AX),data.frame(AX=25)) # New data must be in a data frame

 1
25.22474

3.2 Computing a linear regression in Excel and R

 The regression model associated with Pearson’s correlation is called simple linear
regression (簡單線性迴歸). It’s called regression, as I said, because it tries to find the line
that the dots are “regressing” towards (i.e., are closest to). It’s called linear because the line is
a straight line, where y is a linear function of x. It’s called simple (sorry if the math doesn’t
seem simple enough) because y varies as a function of only one variable (x). In a later chapter

Ch. 5: Correlation and modeling

24

we’ll discuss multiple regression, which is part of the solution to the problem of the partially
confounded variables of Freq, AoA and Fam, and is also the mathematical basis of ANOVA
and lots of other fun stuff.
 Strictly speaking, the linear regression line has the formula ŷ = a + bx, with ŷ instead of y,
since it represents estimated values, not the actual observed values in y (ŷ is pronounced “y-
hat”: a little math “joke”). The formula for the real data is y = a + bx + ε, where ε represents a
vector of random error, that is the difference between the line and each actual data point. A
more common name for these error values is the residuals (殘餘值), since they’re what’s left
over when you subtract the predictions made by the regression line from the actual data.
 The variable y is often called the dependent variable (因變數), since its value depends
on x, which is often called the independent variable (自變數), since as the input variable, x
supposedly can do whatever it wants, or the predictor (預測變數), since x is supposed to
predict y. In a correlation these roles are actually reversible, since the math can only test
symmetric correlation, but in a regression you have to decide which variable is the “input” and
which is the “output” since the goal is to build a model predicting one from the other. So
normally what people do is use their real-world intuitions to decide which variable they think
is “causing” the other; for example, it seems a lot more plausible for our frequency-duration
data to consider frequency the independent variable (or predictor) for the dependent variable
duration, rather than the other way around.
 The values a and b are called coefficients (係數), since they go with (“co”) x, or estimates
(since they estimate the idealized best-fit line). They represent values that stay fixed across the
whole line, as x and y vary. If you remember high school math (don’t worry, you don’t need
much here), b represents the slope (斜率) of the line, and a represents the y-intercept (y軸截

距), where the line crosses the y axis (i.e., the value of y when x = 0). Like the sign of r, the
sign of b shows whether the line is going up or down, but unlike r, which reflects how line-like
the data are, b reflects how steep the line is: b = 0 means totally horizontal, and b = ±∞ means
totally vertical.
 While geometrically b represents the slope of the line, conceptually it also relates
indirectly to the effect size of x. If b = 0, the line is horizontal, so varying x doesn’t cause any
change in y, meaning that the effect size of x couldn’t be any smaller. However, if b is of large
magnitude (whether positive or negative), even a small change in x may predict a large change
in y: a bigger effect size. To make slope a universal measure of effect size (so we can compare
different models or even different data sets), we would first have to rescale both the x and y
values into z scores, but we’ll discuss that in a later chapter.
 Now let’s try finding the regression coefficients, starting with Excel. Take yet another
fake data set (regex.txt) and put it into Excel, then add a linear regression line to the scatter
plot (by right-clicking on a data point, remember?), as in Figure 12. The resulting linear model

Ch. 5: Correlation and modeling

25

is associated with the values in Table 1 (note that I removed the “0” in the r value, but not in
b, since the slope can be any value).

Figure 12. A scatter plot with linear regression line made in Excel

Table 1. The key values for the regression line in Figure 12.

Mx My sx sy r ŷ = a + bx
a b

10.50 5.81 5.92 4.56 -.30 8.23 -0.23

 The easiest way to do regression in Excel is with the built-in regression (迴歸) tool in the
Analysis ToolPak (opened by clicking 資料分析 in the Data menu). Select the exact range in
your spreadsheet that represents the x values and y values (that is, just the numbers and their
headers, if any, but not entire columns: like A1:B25, not A:B), and then make all the other
usual choices about variable labels and output location. Note that in this tool, Y comes first, as
in the equation ŷ = a + bx.
 Running the regression analysis in Excel gives us three tables (with text automatically
shown in Chinese, since I’m using the Chinese version of Excel), arranged in the array shown
in Table 2 below.
 The table in the upper left gives the absolute value of the correlation coefficient “R” (= r),
the coefficient of determination (i.e., R 平方 = R2 = r2), adjusted R2 (which incorporates
information about variance better than R2, as we’ll discuss in a later chapter), standard error
(標準誤) for the model, and the number of data pairs.
 The second table in Excel’s output is giving you ANOVA stuff, since ANOVA is just a
special case of regression, as I’ve mentioned a few times already. We’ll discuss ANOVA
several chapters later, but if you’re curious now, take a look at the p value (for some reason,
given in Chinese as “顯著值” rather than the usual “P-值”). This tests the significance of the
whole linear model predicting y from x; thus it’s the same as the p value you get when you use
R’s cor.test() function. Note also that if you square the t value given by cor.test(), you get the
F value reported here, aside from rounding (we’ll see why this is so in a later chapter).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ch. 5: Correlation and modeling

26

Table 2. How Excel displays the output of a regression analysis

迴歸統計 ANOVA

R 的倍數 0.298286 自由度 SS MS F 顯著值
R 平方 0.088974 迴歸 1 35.18139 35.18139 1.757951 0.201461
調整的 R 平方 0.038362 殘差 18 360.2291 20.01273
標準誤 4.473559 總和 19 395.4105

觀察值個數 20

 係數 標準誤 t 統計 P-值 下限 95% 上限 95%

截距 8.228716 2.078109 3.959714 0.000919 3.862769 12.59466
x -0.23001 0.173477 -1.32588 0.201461 -0.59447 0.134453

 The third table gives information about the two coefficients of the model (i.e., a and b,
here respectively labeled intercept [截距] and x (i.e., its coefficient b, or slope, or effect size).
Notice that there are separate p values for each of these coefficients, something that will
become very useful in later chapters. Why is the p value for x (b) identical to that for the whole
correlation? Because x is the only predictor: makes sense, right? Note also that the y-intercept
coefficient (a) is also significant. This is a common result in real research, because the intercept
just reflects the default value of y (i.e., when x is zero), and that means y is rarely zero, since
the dependent variable is usually something like reaction time or duration, which is never zero
in real life. In our frequency-duration analysis, for example, the durations hover around 249
ms. Thus even when the intercept is statistically significant, researchers usually ignore it
anyway (though we’ll later see instances where it might matter).
 Put together, then, the results for the fake data in regex.txt show that even though the
intercept is statistically significant (p < .001), the coefficient for x is not “different enough”
from 0 to be significant (p = .2 > .05). Thus we cannot reject the null hypothesis that the
regression line is actually horizontal, even though Figure 12 shows a little bit of a slope.
 You can get exactly the same tables in R, and R also gives you information about the
residuals. The heart of the code here are the functions lm(), for creating the linear model (note
the y ~ x formula), and summary(), for summarizing the linear model, particularly its
coefficients and p values.

regdat = read.delim("regex.txt") # Load in the same fake data set
colnames(regdat) # In case you forgot what the variables arereg
regdat.lm = lm(y ~ x, data = regdat) # The data argument means we don't need $
regdat.lm # Just shows the values of the intercept (a) and slope coefficient (b)
summary(regdat.lm) # R^2, adjusted R^2, regression table: compare with Excel
anova(regdat.lm) # ANOVA table: compare with Excel
summary(regdat.lm)$r.squared # Just R^2; check ?summary.lm for more values

Ch. 5: Correlation and modeling

27

 Let’s end this section by finally returning to our frequency-duration data. Here’s the
simple regression analysis in R (starting by reloading the data, in case you lost it), with our
goal being to produce just the main output summary with the coefficients table. Note that R
calls each coefficient an “Estimate”, and calls the p values “Pr(>|t|)”, to show that it’s a two-
tailed p value (do you see why it must be?) derived from the t value; see also “Std. Error” for
standard error (SE). I’ll explain this stuff shortly.

fd = read.delim("freqdur.txt")
fd$LogFreq = log(fd$Freq)
fd.lm = lm(Dur ~ LogFreq, data = fd)
summary(fd.lm)

Call:
lm(formula = Dur ~ LogFreq, data = fd)

Residuals:

Min 1Q Median 3Q Max
-

88.631
-

16.185 -0.017 16.362 98.023

Coefficients:

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 252.6156 1.2288 205.580 < 2e-16 ***
LogFreq -1.2011 0.3833 -3.134 0.00175 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

Residual standard error: 24.89 on 1687 degrees of freedom
Multiple R-squared: 0.005788, Adjusted R-squared: 0.005199
F-statistic: 9.822 on 1 and 1687 DF, p-value: 0.001754

 The p values confirm that in this huge sample, even the tiny negative slope of b = -1.2 is
statistically significant. This slope coefficient implies that duration decreases by 1.2 ms for
each increase of 1 in log frequency, so that’s a very tiny drop indeed, just as we saw in our plot.
The intercept is also highly significant (p < .0001), and the estimated coefficient is around 253.
Does this make sense? Yes: that number represents the expected duration when log frequency
is zero, and so it’s quite close to the 249 ms mean of the overall data set, consistent with the
basically horizontal regression line. This duration is obviously statistically different from the
null hypothesis of 0 ms, which would be an impossibly short duration, and so, as usual, the
intercept results are of no theoretical importance whatsoever.
 By the way, if you only want to look at the part of the lm() results reporting the table of
coefficients and such, you can extract it from the summary object using that $ operator:

summary(fd.lm)$coefficients # See Value section in ?summary.lm for more info

Ch. 5: Correlation and modeling

28

 Another way to do this is to install a package that’s philosophically related to the
tidyverse (introduced in chapter 2), though not (yet) a core part of it, namely broom (Robinson,
2022), which gives you the function tidy() for making neat modeling outputs (as tibbles):

library(broom) # Gotta install it first
tidy(fd.lm)

A tibble: 2 x 5

 term estimate std.error statistic p.value
 <chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 253. 1.23 206. 0
2 LogFreq -1.20 0.383 -3.13 0.00175

 As usual, the values in the tibble are more rounded than the ones that R shows by default
(though only in the display, not their underlying values). Despite this, the tibble will also align
the values by the decimal point, so it’s still easy to see their relative sizes. The tibble also uses
header names with no spaces in them, making it easier to copy/paste the results into Excel and
adjusting them into a table using the Text to Columns tool.

3.3 The math of regression

 Where did all these numbers come from? How is regression related to correlation? And
how does all of this relate to probability and the logic of null hypothesis testing? Let’s find
out....

3.3.1 Calculating regression coefficients and p values

 We start by calculating the regression coefficients a and b that define the line that fits the
data points as closely as possible, along the vertical dimension. That is, we find the line for ŷ
= a + bx that minimizes the residuals (actual values minus estimated values: ε = y - ŷ). As a
minimization problem, this is essentially a calculus problem, but there turns out to be a very
simple solution (using algebra, ultimately derived from the z score formula; see Johnson, 2008,
p. 63), based just on the values in Table 1, namely the means and standard deviations for x and
y (Mx, My, sx, sy) and r (Pearson’s correlation coefficient):

Slope of regression line: 𝑏𝑏 = 𝑟𝑟 𝑠𝑠𝑦𝑦
𝑠𝑠𝑥𝑥

Intercept of regression line: 𝑎𝑎 = 𝑀𝑀𝑦𝑦 − 𝑏𝑏𝑏𝑏𝑥𝑥

Ch. 5: Correlation and modeling

29

 Look again at the third Excel table, or the R table given by summary(regdat.lm): each
row reports not just the coefficient and p value, but also two other things: the standard error SE
and the t value. These numbers actually reflect the fact that regression is built out of one-sample
t tests! Once again, here’s how you compute the t value for the one-sample t test:

t test statistic: 𝑡𝑡 = 𝑀𝑀−𝜇𝜇

𝑠𝑠/√𝑛𝑛
= 𝑀𝑀−𝜇𝜇

𝑆𝑆𝑆𝑆

 In the case of regression, the means refer to the means for the coefficients. According to
the non-directional null hypothesis, the null population mean is μ = 0, and we want to know if
our sample mean M (i.e., the coefficient computed with for the regression equation) is
significantly different from this, that is, if it’s an outlier in this population. According to the
Central Limit Theorem, adjusted for the t distribution family, this population will have a
standard deviation σ = (M-μ)/SE, and that’s what the t equation shows above.
 For example, for the intercept in the Excel table, M = a = 8.228716 and SE = 2.078109,
as reported in Excel or R’s tables, so therefore t = (M-0)/SE = M/SE = 8.228716/2.078109 =
3.959713. Compare that with what Excel reports for t in that same table: 3.959714. Cool!
 Now, where does the p value for the intercept come from? Just as for Pearson’s correlation
coefficient, we use the t distribution from the t family where df = n-2, which here is 20-2 = 18.
So here’s the two-tailed p value (remember that pt() gives you the area to the left of the input
t values, so we need to make it negative to get a tail for us to double for the two-tailed value).
Compare this with the reported p value of .000919.

2*pt(-3.959714, df=18)

[1] 0.0009186793

 So the regression table isn’t just throwing crazy numbers around: they all make sense!
Now you should try confirming the values for the other row in the table, for the slope (b).
 I haven’t explained the SE values in the regression table yet, and ... I’m not going to
explain them in detail. The particular version of SE used here is a bit tricky because we’re
dealing with two coefficients, both a and b, so in a sense even a simple regression is a kind of
multiple regression. The basic idea is the same as before, however: SE is computed by dividing
a measure of “noise” (in this case, related to the residuals) by a measure of sample size (or df),
essentially the “average noisiness” of your sample (in a sense that varies in detail from one
statistical test to another). I’ll also postpone discussing the 下限 95% (Lower 95%) and 上
限 95% (Upper 95%) parts of Excel’s regression table, since they relate to those confidence
interval things that I already told you I’m saving for later.

Ch. 5: Correlation and modeling

30

3.3.2 Regression versus correlation

 As I noted earlier, regression is a model predicting y from x, so you don’t get the same
results if you predict x from y. This is different from correlation, which shows the overall
relationship between x and y. In mathematical terms, even though the equations for y ~ x and x
~ y both contain Pearson’s r, they do so in opposite ways:

Slope for line predicting y from x: 𝑏𝑏 = 𝑟𝑟 𝑠𝑠𝑦𝑦
𝑠𝑠𝑥𝑥

Slope for line predicting x from y: 𝑏𝑏 = 𝑟𝑟 𝑠𝑠𝑥𝑥
𝑠𝑠𝑦𝑦

 I try to show the effect of this difference visually in Figure 13, which is created like so:

x = regdat$x # Saves space below
y = regdat$y
n = nrow(regdat)
yx.lm = lm(y~x)
xy.lm = lm(x~y)
plot(x,y,xlab="x",ylab="y")
abline(yx.lm,lwd=2,lty=1) # Thick solid line for y~x
Add thick dashed line for x~y (note predict() & order() functions:
no easy way to add this usually useless thing):
lines(predict(xy.lm)[order(y)],y[order(y)],lwd=2,lty=2)
segments(x,y,x,predict(yx.lm),lty=1) # Distances to y~x
segments(x,y,predict(xy.lm),y,lty=2) # Distances to x~y
legend("topright",lty=c(1,2),legend=c("y~x","x~y"))

Figure 13. Predicting y from x versus predicting x from y

Ch. 5: Correlation and modeling

31

 In other words, the y~x line minimizes the distances of the dots to the line vertically, while
the x~y line minimizes the distances horizontally. This difference is shown in Figure 13 by the
solid vertical lines to the y~x line and the dashed horizontal lines to the x~y line.
 By the way, notice that I again used predict(...)[order(y)] when I was adding the dashed
line. That’s needed because otherwise the line() function will link the dots in the order they are
given in the data frame, and since the y values are in random order, our “line” would end up
looking like some child has scribbled all over the plot!
 Anyway, you can also use either Excel or R to see how the results of the regression
analysis relate to those you get from doing a simple correlation. Let’s illustrate this with R:

cor(regdat$x,regdat$y)^2 # There's R^2 again
cor(regdat$y,regdat$x)^2 # Order of the variables doesn't matter for correlation
cor.test(regdat$x,regdat$y)$p.value # Order doesn't affect p-value either
cor.test(regdat$y,regdat$x)$p.value # See?
summary(lm(x~y, data=regdat)) # Same R^2 & p-value as for y~x, but dif. coefs.

3.3.3 Simulations, likelihood, and probability

 Our sample is just a sample, not the full “real” (alternative hypothesis) population. Thus
when we find the best-fit line by minimizing the residuals, this line is just our best guess for
the “real” best-fit line, rather than absolute truth. That is, based on our noisy sample, the
regression line is the most likely best-fit line (i.e., the most probable model given our data).
 To get a sense of this logic, you can create fake data generated by your own linear equation
(this is how I generated the Dur variable from AoA, Fam, and Freq), and then see if regression
can find it. For example, the following code creates the function faker() that randomly samples
from a population with a specified “true” intercept and slope (by default, a = 0 and b = 1):

faker = function(n=100, err.sd=1, a=0, b=1) { # Note default values
 x=rnorm(n) # Create fake x
 y=a+b*x + rnorm(n)*err.sd # So y = a + b*x + error (e.g. rnorm(n)*3 has err.sd=3)
 return(data.frame(x,y)) # Output is a data frame of fake data
}

 Now, let’s play with the function, first looking at the effect of noisy data. Does it find the
“real” coefficients a = 0 and b = 1?

fake1 = faker(err.sd=3) # Create very noisy data
plot(fake1$x,fake1$y) # Very messy pattern, since there's a lot of noise
lm(fake1$y~ fake1$x) # Did it find the "real" coefficients a=0 & b=1?

fake2 = faker(err.sd=0.1) # Create less noisy data
plot(fake2$x,fake2$y) # Much clearer pattern, since there's not much noise
lm(fake2$y~ fake2$x) # Did it do a better job finding a=0 & b=1?

Ch. 5: Correlation and modeling

32

 Now let’s try keeping the noise the same, while varying the sample size. You can also try
changing a and/or b as well to see what happens.

fake3 = faker(n=1000) # Create huge data set
plot(fake3$x,fake3$y) # Medium-messy pattern
lm(fake3$y~ fake3$x) # Did it find a=0 & b=1?

fake4 = faker(n=10) # Create tiny data set
plot(fake4$x,fake4$y) # Medium-messy pattern again, but less info about it
lm(fake4$y~ fake4$x) # Did it still find a=0 & b=1?

 Let’s end this discussion of regression math with another kind of simulation testing
another kind of probability. Namely, when a regression is statistically significant, this means
that the slope observed for our sample is an outlier in the null hypothesis population of slopes.
Let’s use a resampling technique see how this probability logic works.
 As we know, there is a tiny but significant correlation between log frequency and duration
in the fd data set:

summary(fd.lm)$coefficients # You might have to recreate this object...

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 252.6156 1.228796 205.5797 0
LogFreq -1.20111 0.383258 -3.13394 0.001754

 If the null hypothesis is correct, the actual slope is zero. We can generate a population of
samples like ours, but with the mean slope of zero, if we put LogFreq and Dur, separately, into
random order, so there is no relation between them at all (except by chance). We do this many
times, and count how often one of these random unrelated samples shows a slope (just by
chance) that is at least as big as our real slope, in either direction. The ratio of “hits” (where by
chance the slope is bigger) compare to all of our random samples is thus an estimate of the
two-tailed p-value. This should give us approximately the same p value as above (around .002).
 The following code does this (with the random ordering handled by sample()), repeated
10,000 times (so be patient - takes at least 16 seconds, maybe longer if you have a slow
computer). By default, this code doesn’t plot anything, since this slows down the looping a lot,
but if you want to see the samples being generated one by one (to compare them with our real
sample), you can delete the # comment in the indicated “optional” line (this programming trick
is called commenting out: it lets you temporarily turn off part of your program without deleting
it entirely). Because the loop is kind of slow, I also use proc.time() to tell me how slow it is
(in seconds), so I know whether I want to try to run this again.

Ch. 5: Correlation and modeling

33

real.slope = summary(fd.lm)$coefficients[2] # Our real slope (i.e., -1.201...)
count.slopes = 0 # This will count slopes further from real one
start.time = proc.time() # How long it takes for R to run something
for (i in 1:10000) { # Be patient!
 LogFreq.new = sample(fd$LogFreq); Dur.new = sample(fd$Dur) # Dif random orders
 model.new = lm(Dur.new ~ LogFreq.new)
plot(LogFreq.new, Dur.new); abline(fd.lm,lwd=3); abline(model.new) # Optional!
 rand.slope = model.new$coefficients[2]
 if (abs(rand.slope) >= abs(real.slope)) {
 count.slopes = count.slopes + 1 # Count "hits"
 }
}
proc.time() - start.time # The time it took to run that loop
count.slopes/10000 # Simulates the two-tailed p value of the linear model

 When I ran this the first time, without plotting (waiting 9.79 seconds for the loop to finish),
I got p = .0021. That’s quite close to the p value given by lm(), suggesting that linear modeling
really is computing the probability that our sample is an outlier in this null population. If you
turn on the plotting (you can stop it before it finishes by clicking the red STOP sign or hitting
the ESC key), you’ll see that the thick line (the real slope) is almost always steeper than the
randomly shifting but mostly horizontal thin lines (the null hypothesis slopes).

4. Nonlinear modeling

 Earlier I noted that one purpose of linear regression is just to add a trend line in a scatter
plot, so you get a sense of how the data are “shaped”. But linear regression assumes that your
data are pretty much linear, which isn’t necessarily the case. In this section, we’ll look at three
things we may want to do when we encounter scatter plot data that seems to show nonlinearity
(非線性) in the relation between x and y: describing plot shapes, modeling nonlinear relations,
and testing significance without knowing what the actual relation is shaped like.

4.1 If you just want a descriptive trend line

 As I keep saying, it’s a good idea to make plots all throughout your data analysis process,
even if you don’t end up using most of them in your final report. In the case of scatter plots,
you can’t assume ahead of time that the best-fit line will end up being linear. So if you just
want to get an intuitive sense of how linear your data actually are, you can do a kind of
exploratory data analysis to look at the overall trend.
 A good choice is local regression, which fits a series of (possibly curved) lines to each
portion of your data, sticking them together to make a reasonably smooth curve for the whole
set, hopefully without overfitting too much. Even Excel can do something like this; just click
moving average (移動平均) when you add the line to your scatter plot. This calculates the

Ch. 5: Correlation and modeling

34

average x and y values within a given period (週期) and plots them (the term “period” indicates
that Excel treats this as a time series method; other common terms are window or span). You
can change how closely the line fits your data by changing the period so that it contains fewer
data points (making a wigglier line, which is more objective but runs the risk of overfitting) or
more data points (making a smoother line, but it runs the risk of smoothing too much, making
a truly nonlinear pattern look linear).
 Of course R does this job in a more sophisticated way, using a method called LOWESS
(LOcally WEighted Scatterplot Smoothing) or a generalization called LOESS (LOcal
regrESSion) (both pronounced low-ess). Either way, the method fits a series of semi-wiggly
polynomial (多項式) functions that weight (emphasize) data points within the moving window.
R has functions for both, but let’s just look at the more general loess() function. Similar to
Excel’s moving average tool, loess() lets you adjust the smoothness using the span() argument,
which ranges from 0 (no smoothing) to 1 (straight line). The following code creates Figure 14:

DX = read.table("scatterplots.txt",T)$DX # If you don't already have them loaded
DY = read.table("scatterplots.txt",T)$DY
plot(DX,DY) # Kind of linear, but maybe not
abline(lm(DY~DX),lty=2) # Dashed linear fit line
loess.model.75 = loess(DY~DX) # Using default span = 0.75

lines(predict(loess.model.75),lty=1,lwd=2) # Thick solid loess line for span = 0.75 (1)
loess.model.25 = loess(DY~DX,span=0.25) # Using span = 0.25
lines(predict(loess.model.25),lty=1) # Thin solid loess line for span = 0.25 (2 - see below)
legend("topleft", lty=c(2,1,1), lwd=c(1,2,1), # Add a legend so we know what's what
 legend=c("Linear","span=0.75","span=0.25")) # Part of legend function...

Figure 14. Various types of trend lines in data set D

 If the data really show a linear relationship, the loess line will be mostly linear (as in data
sets A and B), and if the data show another type of systematic relationship (like the curved
pattern in data sets G and H), it will show that too (try it!). This flexibility is what makes a

Ch. 5: Correlation and modeling

35

loess plot a kind of exploratory data analysis, rather than inferential statistics like linear
regression: it doesn’t build a model, just tries to fit the data locally (in a later chapter we’ll see
that there are methods for building regression models for arbitrarily wiggly lines, but you need
to learn a lot of other stuff before I can explain them to you).
 Figure 14 raises a small but annoying point. First, as I noted earlier in the chapter, plotting
arbitrary lines in a scatter plot can get tricky, since the lines() function links data in the order
it gets them, so if your predictor values are not in sequential order, you’ll get a mess. In the
original plot, we were lucky not to have to worry about this, since DX was already ordered (1,
2, ..., 20). More realistically, DX would be in random order. Try plotting the following:

DX.mess = sample(DX) # Remember that this function scrambles the order
plot(DX.mess,DY) # This will look random, because we only randomized DX
loess.model = loess(DY~DX.mess)
lines(predict(loess.model)) # That can't be right!

 To get the loess line to make sense, you have to order the points by DX:

loess.line.sort = predict(loess.model)[order(DX.mess)] # One way to do it
plot(DX.mess,DY) # Same random dot pattern

lines(loess.line.sort) # That's right!

loess.line.sort2 = predict(loess.model, sort(DX.mess)) # Another way to do it
plot(DX.mess,DY) # Same random dot pattern
lines(loess.line.sort2) # Right again!

 Fortunately, we can sometimes avoid all this annoyance: the abline() function draws a
nice straight line even for messy data, and scatter.smooth() does the same for loess lines. Sadly,
life is never perfect, so even though scatter.smooth() uses loess(), the defaults are different for
reasons I don’t understand, so if you run the code below, the curve looks different from the
loess line in Figure 14. This is another reminder that smoothing, and exploratory data analysis
in general, is always a somewhat arbitrary process.

scatter.smooth(DX.mess,DY) # Try adding labels, legend, other lines etc for practice...

4.2 If you know what type of nonlinear pattern your data show

 Maybe you have some reason to believe that your data should show some particular type
of relation between x and y, even if you don’t know the precise coefficients. For example,
maybe you know that the type of data you’re working with usually shows an exponential
relationship, which is common in growth (like in the hypothetical example I mentioned earlier,
where you hypothesize that each new word added to children’s vocabulary helps them learn

Ch. 5: Correlation and modeling

36

two more). In that case, just add the line for this type of relationship. In Excel, you do this by
selecting the appropriate type of line when adding a line to your scatter plot, and in R, you
express the relationship in that Y~X formula syntax.
 To make this concrete, child language acquisition often shows a U-shaped pattern when
plotting age (x-axis) against accuracy (y-axis). One famous case is in the accuracy curve for
learning a regular morphological rule, as for the English verbal past tense (see Marcus et al.,
1992). At first kids are very accurate because they simply memorize everything, both present
and past tense (saying walk-walked and run-ran). When they realize that there’s a general rule
they begin to overapply it (saying walk-walked and run-runned), causing a drop in accuracy.
Eventually they learn that there are exceptions to the rule (run-ran), and their accuracy goes
back up again.
 If you remember a few chapters back, a U shape is just what you get when you plot
squares (平方數): the square of 0 is 0, but the squares of both negative and positive numbers
are positive. Thus maybe the best model for U-shaped learning is a polynomial function,
specifically this one:

y = a + bx2

 In this equation, a represents the overall height of the U above the x-axis (i.e., the value
of y when x = 0), and b affects the orientation and shape of the U. In particular, if b is positive,
the U will be a smile, but if b is negative, the U will be a frown. Moreover, if the magnitude of
b is small, the U will be shallow and wide (closer to the horizontal straight line you get if b =
0, when y = a), and if the magnitude of b is large, the U will be deep and narrow. In real child
language data, the U tends to be a pretty wide (shallow) right side up U.
 Let’s fake some data like that:

set.seed(1) # So we get the same results
age = runif(100)-0.5 # Pretend these are z-scores for child ages
acc = age^2 + rnorm(100)/10 # Pretend these are scores on some test
plot(age,acc) # The final plot is in Figure 15, after adding trend lines

 Now let’s analyze it both using a linear equation (terrible fit of course) and using a
polynomial equation (great fit of course). Note that in order to get R to know that we want to
square x, we have to surround the x^2 inside the I() function, which means “identical”. That
is, we want R to treat the squaring here as a genuine arithmetic operation, not as a combination
of independent variables in a multiple regression model. The final result is in Figure 15.

Ch. 5: Correlation and modeling

37

poly.lm = lm(acc~I(age^2)) # Fit a polynomial function
lines(age[order(age)],predict(poly.lm)[order(age)],lty=1) # Solid polynomial line
abline(lm(acc~age),lty=2) # Add dashed straight line
legend("topleft", lty=c(1,2), legend=c("Polynomial","Linear"),
 bg="white") # Make legend box white to cover some of the dots (not ideal...)

Figure 15. Polynomial regression fits polynomial data better than linear regression

 Because this curved line is associated with an actual regression equation, we can also take
a look at the coefficients (here, a and b) and see if they’re statistically significant (below I just
show the part of R’s output text with the coefficients table). Since we faked this data set with
a = 0 and b = 1 (do you see how I know?), it’s nice that the analysis estimates a as almost zero
(-0.00086) and b as almost 1 (0.987343). Since a is basically zero, it’s not significant (p =
9.51E-01 = .951 > .05), but b is significant (p = 6.67E-10 = .000000000667 < .0001). If you
feel like it, you can confirm that each p value represents two times the area in the left tail of
the t distribution with df = n-2, where t = “Estimate” (coefficient) divided by “Std. Error” (SE).

summary(poly.lm)
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0008567 0.0139542 -0.061 0.951
I(age^2) 0.9873428 0.1442250 6.846 6.67e-10

 Yet another family of nonlinear models is based on logarithms. We’ll come back to the
most important such model in the chapter on logistic regression, but right now let’s take a quick
look at how logarithms can help test if a lexicon obeys Zipf’s most famous law, about there
being a lot more low-frequency words than high-frequency words. More specifically, this law
says that there is an inverse relation between a word’s frequency (number of tokens in a corpus)
and this word’s frequency rank (whether it’s the most frequent, second-most frequent, and so

Ch. 5: Correlation and modeling

38

on). That is, frequency (f) and frequency rank (r) are related like so (see Bentz et al., 2014, for
details and more complex versions of the equation):

Zipf’s law (simplified version): 𝑓𝑓𝑟𝑟 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟

 In plain language, this equation says that the second-most frequent word will have about
half as many tokens as the most-frequent word, the third-most frequent word will have about
one third as many tokens as the most-frequent word, and so on. If we had all the time in the
world, we could test this hypothesis on some real corpora, but I’m just going to give you some
fake data so we can focus on the logarithmic part instead.
 So here’s our fake corpus data:

freqmax = 1000
wordrank = 1:100
wordfreq = freqmax/wordrank

 If we plot these two variables, we get a pretty little curve, as shown in Figure 16. I hope
the shape looks familiar from our earlier real corpus analyses!

plot(wordrank, wordfreq)

Figure 16. A fake word-frequency distribution based on Zipf’s law

Ch. 5: Correlation and modeling

39

 Now, we could fit a curved line to all those dots, but there’s an easier and more insightful
method for showing that our data set obeys Zipf’s law. This method is based on the useful facts
that the log function turns multiplication into addition (log(a*b) == log(a) + log(b)) and turns
a power into a multiplier (log(a^b) == b * log(a). This works even if the power is negative (1/a
== a^(-1)). So look what happens when we take the log of both sides of the Zipf’s law equation:

𝑓𝑓𝑟𝑟 =
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟

log 𝑓𝑓𝑟𝑟 = log
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟

= log 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 + log 𝑟𝑟−1 = log 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 + (−1) log 𝑟𝑟 = log 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 − log 𝑟𝑟

 See that? If we take the log of both of our fake data variables, we should get an inverse
correlation that’s linear (log(fr) == log(fmax)-log(r)), which makes the correlation not only
visually obvious but also easy to fit using a linear model, as shown in Figure 17:

log.wordrank = log(wordrank)
log.wordfreq = log(wordfreq)
plot(log.wordrank, log.wordfreq)
abline(lm(log.wordfreq~log.wordrank))

Figure 17. Confirming Zipf’s law using a linear model on log rank and log frequency

Ch. 5: Correlation and modeling

40

4.3 If you know nothing about your distribution but still want to test statistical
significance

 What if we have a scatter plot, don’t know what the best-fitting equation is, and want to
do more than just draw a line? In particular, what if we want to know whether the correlation
is statistically significant, even if it’s not very linear? Or what if we know that x or y is highly
skewed, and there’s no way to transform them into normal distributions, and thus we can’t rely
on the areas under the normal distribution (or the related t distribution family) to compute the
p value, as we do with a parametric test like Pearson’s correlation?
 The traditional solution to this kind of problem is to use nonparametric (or
distribution-free) tests, which don’t make any assumptions (or at least not many) about the
shape of distributions. Nonparametric statistics became popular after the publication of Siegel
(1956), which caused many researchers to be more cautious about using parametric tests on
non-normal data (sort of how Gosset, AKA “Student”, convinced people that they could get
more accurate p values if they used sample-size-based t distributions instead of the universal
normal distribution).
 Because nonparametric tests are still widely used, I’ll explain the nonparametric version
of Pearson’s correlation in a moment, but first some caveats.
 Remember Type I errors and Type II errors? The first type happens when you get a false
alarm (you think there’s a pattern when there really isn’t), and the second type happens when
get a miss (you think there’s no pattern but there really is). These two types of errors
complement each other: their risks can never both be zero at the same time. In the case of
nonparametric tests, since they assume (almost) nothing about the distribution, they are less
likely to cause a Type I error due to violation of some crucial statistical assumption. But at the
same time, the fewer assumptions a test makes, the less information it uses, and so the less
powerful it is, resulting in an increase in Type II errors. So if you do know your distribution
(e.g., normal), then using a test specifically for that type of distribution (e.g., parametric) will
use more information, and will make your analysis more powerful.
 Moreover, nonparametric tests aren’t magic. They are still based on the logic of making
inferences about populations via idealized distributions. Put technically, most nonparametric
tests are still asymptotic (漸近的): they get more and more accurate as your sample size gets
larger and larger (reaching for that idealized asymptote). In statistics the only exception to this
bigger-is-better principle is exact tests, like the binomial test we saw in a previous chapter,
which are computed directly from probability, rather than indirectly in terms of idealized
distributions. But most nonparametric tests are not exact tests.
 On top of all this, in the decades since Siegel’s book came out, increasing computer power
has allowed statisticians to run simulations that show that parametric tests are much more
robust than had been thought. That is, even when their assumptions are seriously violated, they

Ch. 5: Correlation and modeling

41

really don’t make as many Type I errors as you might expect (Glass, Peckham, & Sanders,
1972; Rasch & Guiard, 2004). Why? Because the normal distribution is normal: it reappears
everywhere in nature, and many different mathematical functions point towards it. In particular,
as we saw in an earlier chapter, the Central Limit Theorem says that the distribution of sample
means (used to compute standard error) tends to become more normal the larger your sample
is, even if the population itself is not normal at all (bimodal, in the case of our demo).
 Nevertheless, just as it’s good to know how to make unbiased loess plots to look for trends
in a scatter plot, prior to making any assumptions about your data, it’s also good to know how
to test for a correlation in data even without checking if all of Pearson’s assumptions are met.
 So here goes. Very soon after Karl Pearson invented his correlation coefficient, a British
psychologist with the weirdly similar name of Charles Spearman (1863-1945) came up with a
new way to calculate correlations that did not depend (as much) on distribution shape:
Spearman's rank correlation coefficient (史匹曼等級相關係數). (Spearman also invented
factor analysis, one of the oldest data exploration methods.)
 As you can tell from the name, the idea of a Spearman rank correlation is to compare the
ranking (等級) of each x and y value in their respective sets, not their actual values (it doesn’t
matter if you rank them from smallest to largest or largest to smallest, as long as you do it the
same way for both variables). If there’s a positive correlation, the lowest-ranked x values will
tend to be paired with the lowest-ranked y values and the highest-ranked x values with the
highest-ranked y values, and if there’s a negative correlation, this relationship will be reversed.
Yet by throwing out all numerical details except for the ranking, Spearman’s approach throws
out distribution shape too. Computing the rank position of a value doesn’t require us to compute
the distribution parameters mean or standard deviation at all, making this a nonparametric test.
 Mathematically, Spearman’s original approach works like this. First you figure out the
ranking of each x and each y within its own set. If you want to compute this by hand, which
nobody really does, you could use Excel’s =RANK() function (where 1 = largest value) or R’s
rank() function (where 1 = smallest value). The ranking gets a little annoying when numbers
“tie” (不分勝負); for example, in the vector (5, 5, 9), you can’t tell which 5 should be #1. In
that case, you have to compute the mean of the ranks that they would have if they were different:
here we would get the ranks (1.5, 1.5, 3), since if one of the 5s were a 4 or a 6, their ordered
ranks would have been (1, 2), making the mean rank 1.5. If you use Excel’s =RANK() function,
you have to do these adjustments by hand or with clever logic functions, but if you have Excel
2010 or later, you can use the function =RANK.AVG(), which handles the ties with averages,
as just described. R’s rank() does this averaging automatically too:

rank(c(5,5,9))
[1] 1.5 1.5 3.0

Ch. 5: Correlation and modeling

42

 Spearman proposed that you just apply Pearson’s r formula to the ranks instead of to the
raw data. This gives you a value that’s sometimes symbolized as rs, for Spearman’s r, but
sometimes it’s symbolized ρ, the Greek letter rho (though, confusingly, ρ is also often used for
the population version of Pearson’s sample r, similar to how μ is the population version of
sample M).
 Since the p value for Spearman’s rs is traditionally computed using Pearson’s formula,
which relies on the t distribution, larger sample sizes are still more reliable than smaller sample
sizes: Spearman’s test may be nonparametric, but it’s still asymptotic (i.e., it’s not an exact
test). Moreover, you shouldn’t be surprised to learn that the more ties there are in the ranks,
the less reliable rs will be (but this is true for Pearson’s too, where lots of ties would imply a
non-normal distribution). It’s also important to note that Spearman’s rs is really only useful for
testing significance. Unlike the coefficient of determination (r2) derived from Pearson’s r, rs
doesn’t tell you how well x predicts y. It also isn’t associated with any kind of equation that
could be used to draw a trend line.
 The easiest way to compute Spearman’s rs in Excel 2010 or later is to use the
=RANK.AVG() function to get the ranks, and then use =CORREL() on the ranks. But if you
have an older version of Excel that only has the =RANK() function, you can take a look at the
cell functions in spearman.xls, which computes rs using an equation derived (via clever
algebra) from Pearson’s equation when applied to ranks.
 All of this is a lot easier in R, which has a built-in function for computing Spearman’s
correlation coefficient and its associated p value. More precisely, our old functions cor() and
cor.test(), which by default compute Pearson’s correlation coefficient and correlation
coefficient plus p value (respectively), will compute Spearman’s instead if you change the
method argument from the default to "spearman". Try it on the nonlinear data in fake data
set H; note that the Pearson and Spearman p values are similar for this shape, though the
correlation coefficients are different: r < rs, because rs ignores the nonlinearity.

fakecor = read.delim("scatterplots.txt") # In case you forgot
attach(fakecor) # So we can refer to the columns more efficiently
plot(HX, HY) # In case you forgot
cor.test(HX, HY)
cor.test(HX, HY, method="spearman")

 Table 3 shows the Spearman’s rs values that I got for all of the fake datasets in
scatterplots.txt (check if I did them right!). The most important differences between Pearson’s
and Spearman’s results are for data set H (as we just saw) and for I (the outlier doesn’t affect
the ranking either, so the ranked correlation is almost zero, matching our intuitions). Both tests
still show the lowest correlation for the bell-shaped scatter plot in G, since this is not a
monotonic function (a monotonic function makes values consistently go only up or down, not

Ch. 5: Correlation and modeling

43

both up and down like this one does), so ranking won’t be able to distinguish the two tails.
That’s why it’s not really true that Spearman’s correlation is a totally “distribution-free” test.

Table 3. Pearson versus Spearman

 A B C D E F G H I

Pearson r .977 -.972 -.242 .727 .836 1 -.138 .829 .897
p 1.4e-13 1.0e-12 .30 .0003 4.3e-06 0 .56 6.4e-06 8.6e-08

Spearman rs .967 -.965 -.242 .765 .872 1 -.143 1 .060
p 6.6e-06 6.5e-06 .30 .0001 0 6.0e-06 .55 6.0e-06 .80

 Maybe you noticed something weird about the output that R’s cor.test() function gives
when you set method = "spearman". Even though I just told you that Spearman’s original
test is just Pearson’s asymptotic test applied to the ranks, R was written by computer nerds,
and they decided to turn Spearman’s test into an exact test after all. As you can see if you study
the Details section for the help page (type ?cor.test), if you have fewer than 1,290 pairs of x
and y, this function will compute the exact p value by comparing the ranks observed in your
data against all possible ranks, to see how improbable your particular ranking is compared with
chance. This is called a permutation (置換) method (we simulated this in section 3.3.3 when
we generated 10,000 random correlations from our LogFreq-Dur set).
 R doesn’t let you turn off this default, but we can compare the exact p values with the
asymptotic p values (i.e., running Pearson’s test on the ranks) like so:

cor.test(CX,CY,method="spearman")$p.value # The exact Spearman p value

[1] 0.3023548

cor.test(rank(CX),rank(CY))$p.value # The asymptotic Spearman p value

[1] 0.3037551

 If we have ties, though, the exact setting in R’s cor.test() function doesn’t work. For
example, suppose you measure accuracy for a language learner at three ages, and get the series
of scores (5, 5, 9), as in our example above. Is there a significant improvement here? Pearson’s
r isn’t ideal, since neither age nor the scores are normally distributed, and there’s no reason to
think that any correlation will be linear. But Spearman’s rs faces the “ties” problem, so if you
run this, you’ll get the warning “Cannot compute exact p-value with ties”, suggesting that the
results come from the asymptotic Spearman’s test:

Ch. 5: Correlation and modeling

44

kidage = c(1,2,3)
score=c(5,5,9)
cor.test(kidage,score,method="spearman")
cor.test(rank(kidage),rank(score)) # Same results, without the warning

 In any case, if you calculate a Spearman p value with R, you need to know how to report
it. Remember that to report the results of a Pearson correlation test, the format is like this: r(df)
= ..., p < ... (or p = ...). Since R computes the exact version of Spearman’s test by default, and
the rest of the time uses a ranking-based estimate rather than going through Pearson’s
correlation, the concept of degrees of freedom (df) isn’t involved, so instead you would report
the sample size n (or N, in APA style): rs = ..., p < ... (or p = ...), N =
 Finally, if you look at the other method options in cor.test(), you’ll see that in addition
to "pearson" (the default) and "spearman", there’s also "kendall", which is named after
British statistician Maurice Kendall (1907-1983), who explained his method in Kendall (1938).
The full name of this kind of correlation test is Kendall’s tau (for the Greek letter τ = “t”),
since that’s the thing you compute instead of Pearson’s r or Spearman’s ρ. Like Spearman
correlation, it’s a nonparametric test based on ranking rather than the raw values, so it works
no matter how weirdly shaped your distributions are. However, Kendall’s tau is computed in a
conceptually simpler way. Rather than looking at the rankings of all of the x and y values, it
just checks each pair of points (xi, yi) and (xj, yj) to see if they are concordant (i.e., consistent
in ranking), that is, if xi and xj are ranked in the same order as yi and yj. The more concordant
pairs relative to discordant pairs (with different x and y ranking), the stronger the overall
correlation. Of course, both of these numbers will go up as the sample size gets larger, but we
want our final correlation score to lie between -1 and 1. That’s easy to take care of: in a sample
of n data points, there are exactly n(n-1)/2 pairs (n possibilities for the first point and n-1 for
the second point, divided by the two orders). So if C = number of concordant pairs and D =
number of discordant pairs, then tau is:

Kendall’s tau: 𝜏𝜏 = 𝐶𝐶−𝐷𝐷
𝑛𝑛(𝑛𝑛−1)/2

= 2(𝐶𝐶−𝐷𝐷)
𝑛𝑛(𝑛𝑛−1)

 Here’s how this works in R. Note that I’ve changed one of the values in score to avoid a
tie, since ties are neither concordant nor discordant, so some extra strategy is needed. There are
three standard options, called tau-a, tau-b, and tau-c, but I won’t bother explaining them; see
https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient#Accounting_for_ties.
Annoyingly, R doesn’t say which one of these three options it uses, so I leave figuring this out
as an exercise for the interested reader - ha! In any case, as with Spearman’s correlation, R
gives you an exact p value for Kendall’s tau unless you ask it otherwise, but never bases it on

https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient%23Accounting_for_ties

Ch. 5: Correlation and modeling

45

Pearson’s correlation, so you would report the results similarly to Spearman’s correlation,
namely with n rather than df: rτ = ..., p < ... (or p = ...), N =

kidage = c(1,2,3)
score=c(6,5,9)
n = length(kidage)
3
x.pair.ranks = c(kidage[1]> kidage[2], kidage[1]> kidage[3], kidage[2]> kidage[3])
FALSE FALSE FALSE
y.pair.ranks = c(score[1]> score[2], score[1]> score[3], score[2]> score[3])
FALSE FALSE FALSE
C.val = sum(x.pair.ranks == y.pair.ranks)
2
D.val = sum(x.pair.ranks != y.pair.ranks)
1
tau = 2*(C.val-D.val)/(n*(n-1)) # 0.3333333
cor.test(kidage,score,method="kendall") # tau = 0.3333333, p = 1

 Spearman’s correlation is used more often than Kendall’s tau, because of the former’s
close relation with the even more commonly used Pearson’s correlation, but the latter has been
claimed to be better for statistical modeling, including quantifying effect sizes (at least
according to the test’s creator; see Kendall & Gibbons, 1990). But I thought I would explain it
anyway, in case you run across it in the course of your statistical career.

4.4 The grand finale

 Let’s end the chapter by returning to the fd data set, and plot our original frequency-
duration data frame, including AoA, Fam, Freq, and Dur (but not Word, which just gives
identification numbers). As we saw at the beginning, R’s built-in plot() function gives a pretty
interesting result, but there’s an even more useful variant in another package: languageR,
originally developed for the highly influential statistics-for-linguistics book Baayen (2008).
After you download this package and install it, you can run the function pairscor.fnc(), which
combines scatter plots, loess lines, and both Pearson’s and Spearman’s correlations (and their
p values), and shows you histograms for each individual variable as well!
 Here goes:

library(languageR) # You have to install it from the internet first
fd = read.delim("freqdur.txt") # In case you lost it
pairscor.fnc(fd[,2:5]) # Just the raw variables, not the lognormed frequencies

Ch. 5: Correlation and modeling

46

 The result is shown in Figure 18. This isn’t something that you’d put into a final report,
but it is a very helpful tool for you to look at while you’re doing your research, to give yourself
a sense of what your data look like. In other words, it’s a great tool for exploratory data analysis.

Figure 18. Everything you might want to know about the data in freqdur.txt

5. Summary

 Well, what did you learn in this chapter? I don’t know, but I know what I tried to teach
you, with modeling at the heart. The parametric test (based on means and standard deviations)
that gives you Pearson’s correlation coefficient r measures the relationship between two
variables (and the coefficient of determination, r2, even tells you the proportion of variance in
one variable that is predicted by variance in the other). Pearson’s test also gives you a p value
(assuming that your sample is not too small and seems to be normally distributed, since it’s an
asymptotic test that depends on t distributions). This relationship can be modeled using a
simple linear regression equation, defined by an intercept and a slope coefficient (both of which
can be tested for significance with their own p values). You can draw the line associated with
this equation on your scatter plot, in both Excel and R. R also has a general type of object for
expressing a model formula: Y~X. If the relationship isn’t linear, you can draw a descriptive
trend line using moving averages or a loess line, or formalize the relationship with a nonlinear
model like a simple polynomial, or compute a p value no matter what the distribution is like

Ch. 5: Correlation and modeling

47

using Spearman’s correlation or Kendall’s tau, both of which work even for tiny data sets,
using an exact test.

References

Baayen, R. H. (2008). Analyzing linguistic data: A practical introduction to statistics using R.

Cambridge, UK: Cambridge University Press.
Bentz, C., Kiela, D., Hill, F., & Buttery, P. (2014). Zipf’s law and the grammar of languages:

A quantitative study of Old and Modern English parallel texts. Corpus Linguistics and
Linguistic Theory, 10(2), 175-211.

Bowerman, B. L., & O’Connell, R. T. (1993). Forecasting and time series: An applied
approach (third edition). Duxbury.

Coltheart, M. (1981). The MRC psycholinguistic database. The Quarterly Journal of
Experimental Psychology, 33(4), 497-505.

Epstein, S. D., & Seely, T. D. (2006). Derivations in minimalism. Cambridge University Press.
Fisher, S. E., & Vernes, S. C. (2015). Genetics and the language sciences. Annual Review of

Linguistics, 1(1), 289-310.
Gahl, S. (2008). Time and thyme are not homophones: The effect of lemma frequency on word

durations in spontaneous speech. Language, 84(3), 474-496.
Gernsbacher, M. A. (1984). Resolving twenty years of inconsistent interactions between lexical

familiarity and orthography, concreteness, and polysemy. Journal of Experimental
Psychology: General, 113, 256-281.

Glass, G. V., Peckham, P. D., & Sanders, J. R. (1972). Consequences of failure to meet
assumptions underlying the fixed effects analysis of variance and covariance. Review of
Educational Research, 42, 237-288.

Johnson, K. (2008). Quantitative methods in linguistics. Wiley.
Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1-2), 81-89.
Kendall, M. G., & Gibbons, J. D. (1990). Rank correlation methods, 5th ed. London: Griffin.
Marcus, G. F., Pinker, S., Ullman, M., Hollander, M., Rosen, T. J., & Xu, F. (1992).

Overregularization in language acquisition. Monographs of the Society for Research in
Child Development, 57.

Morrison, C. M., & Ellis, A. W. (1995). Roles of word frequency and age of acquisition in word
naming and lexical decision. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 21(1), 116-133.

Pearl, J. (2009). Causality: Models, reasoning, and inference (second edition). Cambridge
University Press.

Perruchet, P. & Peereman, R. (2004). The exploitation of distributional information in syllable
processing. Journal of Neurolinguistics, 17 (2), 97-119.

Ch. 5: Correlation and modeling

48

Rasch, D., & Guiard, V. (2004). The robustness of parametric statistical methods. Psychology
Science, 46 (2), 175-208.

Robinson, D., Hayes, A., & Couch, S. (2022). broom: Convert statistical objects into tidy

tibbles. R package version 0.7.12. https://CRAN.R-project.org/package=broom
Salsburg, D. (2001). The lady tasting tea: How statistics revolutionized science in the twentieth

century. Henry Holt and Company.
Siegel S. (1956). Nonparametric statistics for the behavioral sciences. New York: McGraw-

Hill.
Woods, A., Fletcher, P., & Hughes, A. (1986) Statistics in language studies. Cambridge

University Press.

