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1. Introduction 
 
 Remember how in the first chapter I said there were four basic jobs that statistics does? 
So far we’ve looked at only two of them: summarizing data and computing probabilities. Now 
it’s time to look at the third: modeling. Informally speaking, a statistical model is like a model 
in the ordinary sense of the word: a toy version of something that captures the essence of that 
something, like how a model car looks (and maybe even runs) like a real car, but is a lot simpler. 
You could also say that statistical modeling sort of combines the jobs of summarizing and 
computing probabilities, since a model is intended to be the most likely summary description 
of your data (remember that likelihood is the probability of an analysis, given a data set). 
 Modeling itself is related to another familiar idea: correlation (相關 ). Things are 
correlated if they tend to go together, or even (maybe somewhat counterintuitively) if they tend 
to avoid each other. If you usually see Mary when you see John, then their appearances are 
correlated, but you can still say their appearances are correlated if you almost never see Mary 
and John together. 
 In this chapter we’ll start with correlation (the simpler idea), then move on to basic 
statistical models directly related to correlation. As we’ll see in later chapters, almost all 
statistical tests can be thought of in modeling terms, even if it’s impossible to see them in terms 
of simple correlation, so modeling is the more useful, general idea. Consistent with our simple 
goals, the type of correlation we’ll look at here involves our old friend the normal distribution, 
and thus we’ll be doing a kind of parametric statistics. This type of correlation will turn out to 
be closely related to models called linear models, since they model data in terms of straight 
lines. But at the end of the chapter we’ll get our first taste of nonlinear models as well. 
 
2. Correlation 
 
 Two variables show a correlation (相關) if change in one is related to change in the other. 
Crucially, if X is correlated with Y, it does not necessarily mean that X causes Y: there’s an 
old saying in statistics that “correlation does not imply causation” (「相關不蘊涵因果」). Why 
not? Well, even assuming the correlation between X and Y is “real” and not an accident, it 
might be that Y actually causes X, or that both X and Y are caused by some other thing Z. For 
example, think about this: child vocabulary size is correlated with height! Do you see why? A 
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tiny little baby knows almost no words, but a tall preteen knows thousands. But does this mean 
that height somehow causes word learning, or even the other way around? Obviously not. 
Actually, the correlation between vocabulary size and height arises because kids learn words 
while their bodies are growing, so both of these variables are causally connected with age, not 
with each other. 
 The correlation ≠ causation principle appears everywhere in science, and you have to be 
very careful not to be fooled, because once again, to aid in our survival evolution seems to have 
shaped our brains to see causation everywhere, even when it’s merely correlation. News reports 
of epidemiological (流行病學) studies, which use corpora of existing medical data rather than 
controlled experiments, are especially bad about mistaking correlation for causation. For 
example, if it turns out that people who sleep more than nine hours a day tend to have shorter 
lives, does this mean that if you decide to sleep less than nine hours a day you’ll live longer? 
Not necessarily, since many of the people in the database may have been sleeping a lot because 
they were already sick! 
 Because of this logical problem, the great statistician Ronald Fisher (remember him?) 
refused to believe that smoking causes lung cancer when the first epidemiological studies 
started coming out in the 1950s (Salsburg, 2001). Maybe, he said, there is a gene that somehow 
makes people like to smoke and coincidentally also causes cancer! (He himself was a heavy 
smoker, but that was surely just a coincidence!) We’re now sure that smoking really does 
increase the risk of lung cancer because of experimentation, which not only shows that test 
animals will develop lung cancer more often if forced to “smoke” than their genetically 
identical peers (a counterfactual argument), but also reveals the step-by-step biochemical 
mechanisms explaining how smoking can cause cancer. Experiments are thus often considered 
the “gold standard” of scientific testing. Unfortunately, they’re not always possible (how would 
you run an experiment in astronomy?). This is true in linguistics too. For example, the ideal 
test of language innateness would be to raise a set of identical twins under a variety of 
environmental conditions to see what happens, but this is obviously unethical. The closest we 
can come to studying genetic factors in language is to do well-designed (but perhaps cruel) 
experiments on language-like behavior in animals, while for human beings, we have to be 
satisfied with so-called natural experiments, where we study how people naturally vary in 
their genes, in their linguistic experience, and in their language abilities, and look for 
correlations among these variables (see Fisher & Vernes, 2015, for a review). 
 When there’s no choice but to work with a pre-existing corpus, the best a researcher can 
do is argue for an explanatory mechanism that makes sense of the correlation, and then try to 
test it by removing (or statistically controlling for) as many confounding variables (混雜變

量 ) as possible. For example, if we want to see if a child’s height really does “cause” 
vocabulary to grow, we should also include age in the analysis to see if it predicts vocabulary 
size better than height (and obviously it will, showing that our causal hypothesis was wrong). 
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For a rich (but complex) proposal for how to make causal inferences from quantitative data, 
see Pearl (2009). 
 If correlation does not imply causation, what does it imply? Well, if X and Y are correlated, 
then this means that you can use X to predict Y, and vice versa (not necessarily in the sense 
of predicting the future, but in the sense of learning something you didn’t know before). So if 
X and Y are perfectly correlated, then any change in X will let you predict perfectly how much 
Y will change, and if the correlation is weaker but not totally absent, then your predictions are 
weaker but not totally worthless. Even though it doesn’t demonstrate causation, correlation is 
still a very useful thing! 
 First we’ll look at some simple examples, then we’ll look at the math. 
 
2.1 Plotting correlations 
 
 Before we play with some semi-realistic data, let’s look at some totally fake data just to 
get some basic ideas more clear. So download the file scatterplots.txt, which contains nine set 
of fake data, arranged in pairs: AX and AY go together, BX and BY go together, and so on up 
to IX and IY. Here we are, getting the file: 
 
fakecor = read.delim("scatterplots.txt") 
head(fakecor) 

 AX AY BX BY CX CY DX DY EX EY FX FY GX GY HX HY IX IY 

1 1 0.02107742 20 0.2127149 1 20 1 0.28822329 1 1 1 1.25 1 6.21883 1 1 1 1 

2 2 3.28538012 19 3.8059888 2 14 2 0.7672622 2 4 2 2.5 2 8.797966 2 32 1 2 

3 3 3.32033233 18 3.4291069 3 5 3 0.03418744 3 3 3 3.75 3 11.948945 3 243 1 3 

4 4 3.70397685 17 4.1898443 4 2 4 2.6159561 4 8 4 5 4 15.579394 4 1024 1 4 

5 5 6.24618761 16 7.1616671 5 9 5 2.00192211 5 5 5 6.25 5 19.500477 5 3125 1 5 

6 6 5.8660397 15 6.001156 6 8 6 2.89600024 6 12 6 7.5 6 23.432229 6 7776 2 1 

 
 We’re going to work with these variables in pairs, including calculating their correlations 
with the R function cor() (explained below). But R can’t see these variables directly, since 
they’re inside the fakecor object: 
 
cor(AX, AY) 
Error in is.data.frame(y) : object ‘AY’ not found 
 
 We could refer to them using the $ operator, for example: 
 
cor(fakecor$AX, fakecor$AY) # I'll explain this number in a minute 
[1] 0.9772931 
 
 Or we could refer to them with an R function called with(), which makes things a bit 
easier to read: 
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with(fakecor, cor(AX, AY)) 
[1] 0.9772931 
 
 But to save even more typing, we’re going to do what we said in an earlier chapter that 
we should try not to do: using R’s attach() function to make the column variables visible to 
the workspace:  
 
attach(fakecor) # Now we can refer to all of the variables throughout the chapter 
cor(AX, AY) 
[1] 0.9772931 
 
 We’ll just have to remember to detach() the data frame if we ever need to work with any 
other variables with the same names (including those inside other data frames). 
 Anyway, enough R syntax - let’s get back to the actual statistics. As usual with statistical 
concepts, we should first try to get an intuitive feeling for what’s going on. As I’ve emphasized 
before (and will continue to do), plotting is the best way to get an intuitive feel for your data, 
and in this case what we want is a scatter plot (散布圖，散點圖), because each dot represents 
a pair of values (e.g., the age and vocabulary size of one child). To make a scatter plot in Excel, 
we just select the columns with the variables we want to put into the plot, find the scatter plot 
icon, and clean it up (remove the useless legend box on the right, maybe change the colors of 
the dots to be more printable, add meaningful labels for the x-axis and y-axis). To do this in R, 
we use the plot(X,Y) function, where X and Y are our two variables (X will go on the x-axis 
and Y on the y-axis). 
 Here’s R makes simple scatter plots for the fake data sets A and B, creating Figure 1: 
 
plot(AX, AY, main="A") # Left of Figure 1 
plot(BX, BY, main="B") # Right of Figure 1 

 
Figure 1. Super-fake data sets A and B 
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 In plot A, the X and Y axis variables are positively correlated: as X goes up, Y tends to 
go up too. In plot B, they are negatively correlated: as X goes up, Y tends to go down. In both 
cases, this is merely a tendency: the dots still form clouds, not perfect straight lines. Still, both 
of these correlations seem to be pretty strong: the clouds of dots are quite thin. Try plotting the 
rest of the data sets (CX and CY and so on) to see what they look like. 
 Plots are all well and good for pleasing our monkey brains, but how do we quantify this 
stuff? One of the earliest inventions (discoveries?) in inferential statistics was a quantitative 
measure of correlation. This was developed by that statistical genius Karl Pearson (the 
“Saussure” of statistics), and so this quantitative measure is named after him: Pearson's 
correlation coefficient (皮爾遜相關係數), symbolized as r. (The “r” stands for regression 
[迴歸], which we’ll discuss later in this chapter.) If the r value is 0, there is no correlation at 
all: the cloud of dots is essentially a big blob. If the r value is positive, this indicates a positive 
correlation, with higher r values indicating a stronger (less cloudy) correlation, up to a 
maximum of r = 1, which indicates a perfect straight line of dots rising up from the left to right. 
Similarly, if r is negative, the correlation is negative, with r = -1 indicating a perfect straight 
line of dots falling down from left to right. 
 In Excel, Pearson’s r can be calculated using the cell function =CORREL(X,Y), where 
X and Y represent two equal-length ranges (e.g., two columns, as we have here). In R, you can 
use the function cor(x,y), which works the same way (though as usual, this function, and other 
R correlation functions, has other magic powers, as we’ll see soon): 
 
cor(AX,AY) 
 
[1] 0.9772931 
 
cor(BX,BY) 
 
[1] -0.9716553 
 
 Those results look pretty reasonable: both values are close to |1|, since both clouds are 
close to straight lines. Try computing Pearson’s r for the other data sets, and compare the results 
with the plots to see if they seem reasonable to you. You might also want to look at the figure 
in https://en.wikipedia.org/wiki/Correlation_and_dependence, showing a wide variety data 
cloud shapes and their associated r values. Basically, what you’ll see is that the more line-like 
the dots are, the closer r is to 1 (if rising) or -1 (if falling). 
 Because r can never go below -1 or above +1, the style rules of the American Psychology 
Association (APA) say that you shouldn’t give the initial zero in an r value (just as with p 
values, which can never go below 0 or above +1). So if we were reporting the above values, 
we might write (rounding them a bit too) as r = .98 and r = -.97. 

https://en.wikipedia.org/wiki/Correlation_and_dependence
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 Remember that I said that the correlation of X and Y implies that we can predict Y from 
X (or vice versa)? We can quantify this predictability very easily. Namely, if X and Y have a 
correlation coefficient of r, then we can say that the r2 is the proportion of the variance of Y 
(remember, variance is the square of the standard deviation: s2) that is explained or predicted 
or accounted for by the variance of X. For this reason, r2 is sometimes called the coefficient of 
determination (確定係數). Note that before you square it, r is not a proportion, since it can 
be negative, but r2 can be interpreted as a proportion, since it must lie between 0 and +1. Note 
also that squaring means that r2 is smaller than |r|. For example, let’s say we collect a bunch of 
kids of various ages and measure both their height (X) and their vocabulary size (Y), and we 
get r = .6. In this case, the coefficient of determination r2 = .36, which means that the variance 
in height only predicts around 36% of the variance in vocabulary size (not 60%). 
 
2.2 Are common words shorter? 
 
 Now let’s look at a more realistic linguistic example. Remember that one of Zipf’s laws 
says that the more common a word is, the shorter it tends to be, in terms of having fewer letters 
(in spelled words in a language like English) or fewer phonemes or syllables (in any language, 
presumably). It turns out that word frequency also shortens the phonetic duration of words, 
even for words that have exactly the same number of syllables and phonemes. For example, 
the English words time (時間) and thyme (麝香草) are listed in the dictionary as perfect 
homophones (they’re just spelled differently), but Gahl (2008) found that when people say 
them, the word time is acoustically a little bit shorter. Why? Statistical analysis of many such 
pairs showed that the key factor was word frequency: highly practiced words like time are 
articulated slightly more efficiently than more rarely needed words like thyme. 
 So here we have a correlation: as the frequency of a word goes up, the duration of a word 
goes down. Thus we can predict approximately how long a word is based on how frequent it 
is. Since one variable goes up while the other goes down, this is a negative correlation. This 
contrasts with age and vocabulary size, which show a positive correlation, since when age 
goes up, vocabulary size goes up too. 
 Hm, I wonder if the frequency-duration correlation is also true in a fake data set I created 
specifically to simulate this real-world pattern? Let’s find out! Download the file freqdur.txt 
and play along.... 
 What’s in there? Whether you open it in Excel or R, you’ll see that it’s got five columns, 
called Word, AoA, Fam, Freq, and Dur. You can probably tell that Word is just the 
identification numbers for a bunch of words, Freq is the token frequency of these words in 
some corpus, and Dur must be ... hm... maybe... duration? Yes, it’s duration, in milliseconds 
(ms). The mean duration is around 249 ms (check yourself!), which is pretty typical for real-
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world syllables in lots of languages, including Mandarin and English, and the distribution is 
also normal (check yourself!), which is also realistic. 
 What about the other variables? “AoA” stands for age of acquisition, or the age at which 
you first learned a word, computed in some sort of pretest on a large number of people who 
didn’t participate in the duration experiment (the values here are supposed to look like means 
on a seven-point scale, from 1 = youngest to 7 = oldest). In real life, this variable really does 
affect word processing independent of word frequency (e.g., Morrison & Ellis, 1995). “Fam” 
stands for familiarity, representing how familiar a word seems to you (likewise collected in a 
separate pretest, on a seven-point scale from 1 = least familiar to 7 = most familiar). Again, in 
the real world, this variable affects word processing independently of word frequency (e.g., 
Gernsbacher, 1984). 
 Psycholinguistically, these three variables are totally different: frequency reflects how 
much experience you have with a word, age of acquisition reflects how young you were when 
you first learned it, and familiarity reflects your feelings about using the word. Thus these three 
numbers won’t be perfectly correlated. For example, it’s common for kids to talk about zoo 
animals, but since adults don’t talk about them so much, words like panda are not particularly 
high-frequency. Similarly, some words can be familiar even if they’re kind of rare, perhaps 
because they are so vivid. Yet obviously these three variables must be at least somewhat 
correlated as well, since if you learned a word young, you’ve probably encountered it more 
often (higher frequency) than a word you learned much later in life, and if a word is very 
frequent, it’s probably quite familiar too. 
 So we’re in trouble right from the start: there are many confounding variables, making it 
hard to claim that any correlation between frequency and duration is meaningful, let alone a 
reflection of a causal relation. 
 By the way, this data set is only partially fake. The values for AoA, Fam, and Freq come 
directly from the real English words in the MRC Psycholinguistic Database (Coltheart, 1981: 
http://websites.psychology.uwa.edu.au/school/MRCDatabase/uwa_mrc.htm). For example, in 
the MRC database, the word abandonment has exactly the same AoA, Fam, and Freq values 
that I list for Word 1. But the database has no information about duration, and anyway I’m 
pretending that these are monosyllabic CVC words, so I just made up the values for Dur. When 
I created the Dur variable, I did so in a clever way, not only so that the mean and distribution 
shape would be realistic, but also so that it would be correlated with (some of) the other values 
(I’ll explain in a later chapter exactly how I did this, since as we’ve already seen in earlier 
chapters, it’s sometimes useful to simulate data). 
 This means that the confounds among AoA, Fam, and Freq are genuine, and if we really 
did have real Dur values, it would indeed be difficult to tell which of these three lexical 
variables was predicting duration. I’ll discuss this confound more later in this chapter, and we’ll 
learn how to deal with such confounds in a later chapter (the same one where I explain how I 

http://websites.psychology.uwa.edu.au/school/MRCDatabase/uwa_mrc.htm
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created Dur), but for now, let’s just look only at Freq and Dur (as many psycholinguists really 
do, since frequency is a lot easier to get, right from a corpus, than age of acquisition or 
familiarity, which require running extra experiments). 
 OK, let’s get started: 
 
fd = read.delim("freqdur.txt") 
 
 Here’s something cute that R can do: 
 
plot(fd) 
 
 What the heck is that? Look closely: it’s all possible scatter plots for all possible pairs of 
numeric vectors (columns) in the fd data frame! This is another property of an object-oriented 
programming language like R: some functions (e.g., plot()) change their meaning depending 
on their arguments (here, a data frame), sort of like a human language (e.g., see in see a movie 
and see a friend really don’t mean the same kind of “seeing”). 
 The first vector in fd just lists the arbitrary identification numbers for each word, so 
correlations with that vector don’t make any sense. Let’s remove it and plot the rest (in Figure 
2). Any of the following commands will work; they all produce exactly the same output (since 
it never hurts to learn more about basic R vector operations). To do this in Excel, we would 
have to make each plot separately, in both directions (e.g., with Freq on the x-axis and Dur on 
the y-axis, as in the third plot from the left on the last row, and also with Dur on the x-axis and 
Freq on the y-axis, as in the fourth plot from the left on the third row down). 
 
 
plot(fd[,2:5]) # X[,Y] means "in data frame X, choose all rows, but only columns Y" 
plot(fd[,-1]) # Here, -Y means "everything except Y" 
plot(fd[,c("AoA","Fam","Freq","Dur")]) # You can use the column names too 

 
Figure 2. All scatter plots 
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 We can also compute all possible Pearson’s correlation coefficients the same simple way, 
applying the cor() function to the whole data frame. Note that the correlation of each variable 
with itself is r = 1 (are you surprised? I hope not), and the correlations are symmetric: so 
whether we compute the correlation of Freq with Dur or compute the correlation of Dur with 
Freq, we get r = -.064 (rounding it a bit, and dropping off the initial zero). 
 
cor(fd[,-1]) # The simplest syntax 
 
 AoA Fam Freq Dur 
AoA 1.00000000 -0.68834211 -0.24143218 0.08004799 
Fam -0.68834211 1.00000000 0.45231824 -0.06832922 
Freq -0.24143218 0.45231824 1.00000000 -0.06393663 
Dur 0.08004799 -0.06832922 -0.06393663 1.00000000 

 
 Hm. That is an extremely tiny correlation. And look: Freq has much larger correlations 
with Fam (r = .45) and with AoA (r = -.24). This is the problem of confounded variables, 
staring right at us. Returning to our focus on Freq and Dur, at least the correlation coefficient 
is negative: higher frequencies mean shorter durations. But is such a tiny correlation 
meaningful in any way? It’s impossible to see any negative trend in the dots in that tiny scatter 
plot. 
 But wait a minute. Isn’t frequency notoriously skewed? Look at how normal the dots are 
for the Dur plots: many dots in the middle, few on the edge. But the dots along the Freq axis 
look quite skewed, and indeed, it’s easy to confirm that this variable isn’t at all normal (see 
Figure 3): 
qqnorm(fd$Freq) 
qqline(fd$Freq) 

 

Figure 3: Freq is not normally distributed 
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 So what? Well, as we’ll make more explicit shortly, the logic of Pearson’s r builds on the 
logic of z scores, and therefore computing p values for r is most reliable if the variables along 
both the x-axis and y-axis are normally distributed (with some caveats, as we’ll also see soon). 
That’s why it’s considered a parametric test. If you report an r value involving a frequency, 
your readers will expect you to lognorm frequency first. So let’s do that (Figure 4): 
 
fd$LogFreq = log(fd$Freq) # Excel too (remember =LOG() is base 10, not base e) 
qqnorm(fd$LogFreq) 
qqline(fd$LogFreq) 

 

Figure 4. LogFreq is much more normally distributed 
 
 Let’s see if this transformation helps improve the correlation with duration. Note that in 
my new plot in Figure 5, I put frequency on the x-axis and duration on the y-axis, since I want 
to see if frequency helps predict (some of the variation in) duration. 
 
plot(fd$LogFreq, fd$Dur, xlab="Log frequency", ylab="Duration (ms)") # Excel too 
cor(fd$LogFreq, fd$Dur) 
 
[1] -0.07608045 
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Figure 5. Correlation of log frequency with duration 
 
 Can you see the dots going down slightly, consistent with r = -.08? Yeah, I can hardly see 
it either. But at least the r value and the plot are consistent with each other: a blobby cloud of 
dots and an r value quite close to zero. Indeed, the coefficient of determination r2 = .00579, so 
only about 1/2 % of the variance in duration is predictable from the variance in log frequency. 
 Disappointing, but real life is also disappointing sometimes. Hm, but maybe even this tiny 
r value is statistically significant...? That is, even though the dot cloud is pretty blobby, maybe 
it’s significantly less blobby than we’d expect by chance alone. R has a simple function for 
testing this: cor.test(). It works just like cor(), except that it also gives you a p value (Excel 
doesn’t have a simple way to do this, though we’ll see later how we can make Excel do it 
anyway): 
 
cor.test(fd$LogFreq, fd$Dur) 
 
        Pearson’s product-moment correlation 
 
data:  fd$LogFreq and fd$Dur 
t = -3.1339, df = 1687, p-value = 0.001754 
alternative hypothesis: true correlation is not equal to 0 
95 percent confidence interval: 
 -0.12332976 -0.02848698 
sample estimates: 
        cor  
-0.07608045 
 
 The correlation (cor = r) is still the same (-0.07608045), but now we also get a p value 
(0.001754). It’s less than .05, so it seems that the almost invisible Freq and Dur correlation is 
unlikely to have happened by chance. (This is not at all unusual, by the way: in this complex 
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interactive world we live in, almost everything is correlated with everything else, even if only 
by a tiny amount: https://www.gwern.net/Everything.) 
 But how did cor.test() compute this p value? Why is there a t value in there too? And 
where does r come from anyway? For the answers to these fascinating questions, read on! 
 
2.3 The math of correlations 
 
 Pearson’s key insight was that if we want to quantify the correlation between x and y, we 
should build on the math of variation. Why? Because if x and y are correlated, then their 
distributions should covary: one goes up while the other goes up, or one goes up while the 
other goes down, in a semi-predictable way. 
 Now think back about how to calculate the variance. Variance relates to the “average” 
distance of all the data points in a distribution from the mean; or more properly, that’s what the 
standard deviation is (s), and variance is the square of that (s2). In case you forgot, variance is 
the sum of squares (SS: the sum of the square of the deviances, that is, each data point x minus 
the mean M), divided by the degrees of freedom (df, which here is n - 1): 
 

Sample variance:  𝑠𝑠2 = ∑(𝑥𝑥−𝑀𝑀)2

𝑛𝑛−1
 

 
 But now we don’t just have one variable and one distribution, but two variables (x and y) 
and two distributions. Well, it’s lucky that we decided to define variance in terms of the sum 
of squares rather than absolute values, since if for one distribution you sum up the squares of 
the differences ((x-M)2), the natural thing to do with two distributions is to sum up the products 
(積) from multiplying the differences: (x-Mx)(y-My) (remember from algebra class that xy 
means x×y, avoiding the use of a symbol that confusingly looks like the letter x). 
 This trick gives you something called the sum of products (SP). The x and y values are 
paired (they represent two values from the same thing, e.g., the frequencies and durations of 
the words in our example), so their sample sizes are the same: n. So we can just divide by df 
again, which is still n-1. Dividing SP by df gives us the covariance (共變異數). Just as ordinary 
variance represents the “typical” distance of the data points from the “center” of one 
distribution, the covariance represents the “typical” distance of the dots in the scatter plot from 
the overall “center” of the scatterplot (i.e., the point defined by (Mx, My) = mean(x), mean(y)), 
as shown below. If you want, you can compute the covariance in Excel with =COVAR() and 
in R with cov(). 

Sample covariance:  𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥 =
∑�(𝑥𝑥−𝑀𝑀𝑥𝑥)�𝑦𝑦−𝑀𝑀𝑦𝑦��

𝑛𝑛−1
 

 

https://www.gwern.net/Everything
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 This formula already does some of what we want from a measure of correlation. In 
particular, it gives positive values when the xs and ys in each pair tend to be on the same side 
of their respective means (e.g., when it’s usually the case that yi > My for xi > Mx), but gives 
negative values when they tend to be on opposite sides (e.g., when it’s usually the case that yi 
< My for xi > Mx). Moreover, if there is no relationship between x and y, forming a big blob of 
dots, then (x - Mx)(y - My) will be positive and negative about an equal amount of the time, so 
when you sum them all up, you’ll get a covariance close to 0. 
 Unfortunately, while the sign (+ vs. -) of covariance makes sense, its magnitude (size in 
absolute terms, ignoring sign) isn’t very useful. This is because the actual value of the 
covariance depends on the magnitude of Mx and My, which aren’t relevant to the intuitive idea 
of correlation. For example, intuitively, x = c(1,2) should have the same correlation with y = 
c(10, 20) as with z = c(100, 200), namely a perfect correlation, since x forms a perfect line both 
with y and with z. However, as you can see if you compute it in R or Excel, the covariance of 
x and y is 5, while the covariance of x and z is 50, simply because the mean of y is smaller than 
the mean of z. 
 What we want is a standardized correlation measure, and as with the computation of the 
z score, we get it by dividing our “average” (actually the covariance here) by the standard 
deviations of the two samples (sx and sy). Once we do that, we finally derive r: Pearson's 
correlation coefficient (皮耳森相關係數). Since covariance itself is sort of related to the two 
samples’ standard deviation, a bit of algebra allows you to compute r either by dividing 
covariance by both sample standard deviations, or by dividing the sum of the products of z 
scores from the two samples by the degrees of freedom: 
 

Pearson’s correlation coefficient:  𝑟𝑟 = 𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥
𝑠𝑠𝑥𝑥∙𝑠𝑠𝑦𝑦

=
∑𝑧𝑧𝑥𝑥𝑧𝑧𝑦𝑦
𝑛𝑛−1

 

 Because of how it’s computed, Pearson’s r makes four important assumptions. First, as in 
most statistical tests, it assumes that the data points are independent of each other (we’ll come 
back to this assumption shortly). Second, the logic of Pearson’s correlation means that r is only 
close to -1 or 1 when the correlation of data points is linear (線性), forming a straight line. For 
example, it seems that each scatter plot in Figure 6, derived from the data set scatterplots.txt, 
involves a function predicting Y from X perfectly. However, when we calculate the Pearson 
correlation coefficient, we find that only the straight line gives you r = 1: (F: r = 1; G: r = -.14; 
H: r = .83). 
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Figure 6. Linear vs. nonlinear relations 
 
 Third, Pearson’s r is a parametric statistic, so both x and y are assumed to be normally 
distributed. This follows from using the mean in the computation. Thus Pearson’s r is affected 
by outliers, as you can see in the scatter plot in Figure 7 (again using data from scatterplots.txt): 
because of that one dot in the upper right corner, the correlation is the very high r = .90 (try 
it!), even though most of the data is in a square-ish blob in the lower left corner, so it’s 
ridiculous to claim that we can predict much of anything about y from x (and certainly not r2 = 
80%). 

 
Figure 7. Don’t use Pearson’s correlation here 
 
 The fourth assumption of Pearson’s correlation coefficient is that as x varies, the variance 
in y should be roughly constant (the technical name for this, which we’ll see again later, is 
homoscedasticity: homo = same, scedastic = scattering). Hence data like those plotted in 
Figure 8 (again from scatterplots.txt) are also problematic to analyze with r or r2, since the 
variance in y increases as the value of x gets higher (that is, the “line” of dots gets vertically 
wider as you move from left to right) 
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Figure 8. Don’t use Pearson’s correlation here either 
 
 Since we’re discussing math, you might wonder why the coefficient of determination r2 
represents the proportion of variance in y that can be predicted by the variance in x. Well, it’s 
just algebra; if you’re really curious, you can check Johnson (2008, pp. 64-66) for a pretty 
simple explanation (though you should read the section below on the math of regression first). 
 Remember our frequency-duration example? I haven’t forgotten. Remember that r was 
pathetically tiny, but it still turned out to be statistically significant? How was this tested? 
 Well, through the Magic of Mathematics (actually, very simple algebra), the relationship 
between r and z (as in the equation for Pearson’s correlation coefficient) means that r is also 
related to t, and then we can use a kind of t test to give us p values. The conceptually simplest 
version of the formula relating t and r looks like this: 
 

t value associated with r value:  𝑡𝑡 = 𝑟𝑟
√1−𝑟𝑟2/√𝑛𝑛−2

  (df = n-2) 

 
 This formula actually relates to the logic of z scores and t values that we discussed in the 
probability chapter. Compare it with the formula we used for the one-sample t test: 
 
t test statistic:  𝑡𝑡 = 𝑀𝑀−𝜇𝜇

𝑠𝑠/√𝑛𝑛
 

 
 Instead of M-μ of the t test formula, we now have r; instead of s we have √(1-r2); instead 
of n we have n-2. All of these substitutions kind of make sense, if you think about them. First, 
r means r-0, that is, our observed correlation coefficient compared with the null hypothesis of 
no correlation (like M-μ); since r2 represents the proportion of the variance explained by the 
correlation, 1-r2 is the proportion not explained by the correlation, so it’s a measure of “noise” 
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variance (like s2), so the square root makes it like the standard deviation (like s); and n-2 is 
similar to n (and here it’s the df). We use df = n-2, rather than the n-1 used in the one-sample t 
test, basically because we now we have two distributions (x and y) (though as I warned you 
earlier, it’s safer to just look up the df, since df logic is never obvious). 
 The file correl-sig.xls computes all of this automatically using basic Excel cell functions, 
and it also includes another test (from Woods et al., 1986, pp. 165ff) for comparing two 
independent correlations; you can click on the cells to see what equations are being used. 
 As usual for doing real statistics, it’s simpler to use R’s built-in function for this job, which, 
as we’ve seen, is called cor.test(). For example, if we go back to our highly linearly correlated 
data set B in scatterplots.txt, we can run the following command, which makes R print out the 
following report (as with the t.test() reports we saw in an earlier chapter, we’ll explain the 
confidence interval part in a later chapter). This function gives you the two-tailed p value by 
default, and that’s what you should report anyway, since it would be equally amazing to 
discover that r is very close to 1 or very close to -1. 
 
cor.test(BX,BY) 
 
        Pearson’s product-moment correlation 
 
data:  BX and BY 
t = -17.438, df = 18, p-value = 1.012e-12 
alternative hypothesis: true correlation is not equal to 0 
95 percent confidence interval: 
 -0.9889498 -0.9282697 
sample estimates: 
       cor  
-0.9716553 
 
 Wow! That p value is super-tiny: p = .000000000001012.... To report this, we might write: 
“There was a significant correlation between BX and BY (r(18) = -.97, p < .0001)”. There’s 
no need to mention “Pearson’s”, since it’s the most common kind of correlation, and you don’t 
even need to mention t, since due to the above formula relating t and r, r itself is also a test 
statistic (i.e., a key value in a statistical analysis), and along with the degrees of freedom (18 
= n-2= 20-2), the reader gets all the information needed to understand your statistical result. 
 As usual in R, cor.test() doesn’t just print output, but creates an object too. Thus if we 
want, we can extract values from this object (instead of copy/pasting them from the above text 
report). Say we named my.test = cor.test(BX,BY). Then r is my.test$estimate, t is 
my.test$statistic, df is my.test$parameter, and p is my.test$p.value. (Again as usual with R, 
I learned all this by typing ?cor.test, then looking at the Value section, which describes the 
object created by this function.) 
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 I guess we should confirm that R’s reported values match our formula above. Try running 
the following commands: 
 
n.B = length(BX) 
r.B1 = cor(BX,BY) 
r.B2 = sum(scale(BX)*scale(BY))/(n.B-1) # Simple version of r formula 
round(r.B1,10) == round(r.B2,10) # Rounding to remove tiny computation differences 
t.B1 = r.B1/sqrt((1-r.B1^2)/(n.B-2)) 
t.B2 = r.B2/sqrt((1-r.B2^2)/(n.B-2)) 
round(t.B1,10) == round(t.B2,10) 
p.B1 = 2*pt(-abs(t.B1),df=n.B-2) 
p.B2 = 2*pt(-abs(t.B2),df=n.B-2) 
round(p.B1,10) == round(p.B2,10) 
 
 Because of the cozy relationship among z, t, and r, and because the normal distribution 
keeps reappearing by mathematical magic all over the place, the same thing turns out to be true 
of r: Pearson’s correlation is everywhere in statistics! As we’ll see in the next section, 
regression analysis is a generalization of correlations, and as we’ll see in later chapters, many 
other tests, like the unpaired t test, the paired t test, and all sorts of ANOVA, have the 
mathematics and concepts of correlation or regression built into them. 
 Let’s end this section by returning to the p value for the frequency-duration correlation: 
 
cor.test(fd$LogFreq, fd$Dur) 
 
        Pearson’s product-moment correlation 
 
data:  fd$LogFreq and fd$Dur 
t = -3.1339, df = 1687, p-value = 0.001754 
alternative hypothesis: true correlation is not equal to 0 
95 percent confidence interval: 
 -0.12332976 -0.02848698 
sample estimates: 
        cor  
-0.07608045 
 
 We could report this as r(1,687) = -.08, p < .01. But look at the size of that df! Our sample 
is huge. Remember the connection between statistical power and sample size? If there is any 
pattern at all in your data, no matter how tiny, increasing the sample size enough will eventually 
let you discover that the pattern is statistically significant. But the r2 value also reflects effect 
size, that is, how “significant” the pattern is in a more practical sense, and here, r2 = 
cor.test(fd$LogFreq,fd$Dur)$estimate^2 = .006, which is an extremely tiny effect, unlikely 
to have much real-world implications: less than 1% of the variance in duration is predictable 
from log frequency. 
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 Thus if our sample had fewer items, like only 100, it seems likely that this r value would 
not have been significant. We can simulate this by randomly sampling from our sample, like 
so (note the function subset(D,P) for choosing a subset of the data frame D with logical 
property P, and the function is.element(A,B), which is true if A is an element of the set B): 
 
set.seed(2) # So you get the same sample as I do 
fd100.items = sample(fd$Word, 100, replace=T) # Randomly choose 100 of our words 
fd100 = subset(fd, is.element(fd$Word, fd100.items)) 
cor.test(fd100$LogFreq, fd100$Dur) 
 
        Pearson’s product-moment correlation 
 
data:  fd100$LogFreq and fd100$Dur 
t = 0.51272, df = 94, p-value = 0.6093 
alternative hypothesis: true correlation is not equal to 0 
95 percent confidence interval: 
 -0.1492567  0.2506417 
sample estimates: 
       cor  
0.05280946 
 
 Now p = .6 > .05: not significant at all.. This is yet another lesson that statistical 
significance doesn’t necessary reflect real-world significance. We can report our finding as 
reflecting something unlikely to be pure chance, but I doubt our readers will be very impressed. 
 
2.4 Special applications of correlation math 
 
 Even though correlations were originally invented to handle continuous, normally 
distributed data, they may still make sense with other types of data. For example, suppose our 
variables x and y are both binary variables, containing only the values 0 and 1. If we compute 
Pearson’s r for these, we get something called the mean square contingency coefficient, or 
more simply the phi coefficient, symbolized with the Greek letter φ or rφ. The phi coefficient 
is what you might use to quantify the correlation of John and Mary’s appearances (mentioned 
at the start of this chapter), counting appearances as 1 and absences as 0. 
 A real-life application of the phi coefficient in linguistics is illustrated by Perruchet and 
Peereman (2004), who used this measure to quantify phonotactics. Here x represented the 
appearance of one phoneme in a word and y represented the appearance of another phoneme 
in a word; 1 indicated that a phoneme was present in a word and 0 that it was not. That way, if 
phonemes x and y often appear together, their φ value is closer to 1 (e.g., palatals and front 
vowels in Mandarin) and if they “avoid” each other, φ is closer to -1 (e.g., velars and front 
vowels in Mandarin). 
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 Another clever use of the logic of correlation is in the study of time series, where there is 
a sequence of event outcomes (see, e.g., Bowerman & O’Connell, 1993). In most real-life time 
series, we cannot say that each outcome is totally independent of every other event; it’s true 
for coin flips (coins have no memories) but not for most other things. For example, some event 
outcomes recur in cycles (e.g., Google searches for the term “Christmas” increase every twelve 
months, then drop again) or are correlated with each other (e.g., in a corpus of spontaneous 
speech, speakers who use a passive construction may be more likely to use another one shortly 
afterwards). A simple method to study such violations of independence is to compute 
autocorrelation, where the first variable x is the original time series, and the second variable 
y is the exact same time series with a time lag. 
 For example, recall my sad attempt to produce a sequence of 120 “random” 0s and 1s 
(repeated below): 
 
110101011001010110001101010100101010101000110100011010110101 
001101101001100011011100110100001110101001100100110101101000 
 
 If we define y as this series, then x will be the same series, just shifted backwards by one 
digit, representing the key press just before each key press in y. You can exploit R’s vector 
functions to create x in a clever way, and then we can use cor.test() to see how “random” my 
key presses really were: 
 
y = c(1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,0,0,1,1,0,1, 
 0,0,0,1,1,0,1,0,1,1,0,1,0,1,0,0,1,1,0,1,1,0,1,0,0,1,1,0,0,0,1,1,0,1,1,1,0,0,1,1,0,1,0,0,0,0,1,1, 
 1,0,1,0,1,0,0,1,1,0,0,1,0,0,1,1,0,1,0,1,1,0,1,0,0,0) 
x = c(y[2:length(y)],y[1]) # Puts the first value of on the end (clever!) 
cor.test(x,y) 
 
 We get r(118) = -.33, p = .0002: clearly there was a very strong tendency for me to 
alternate my hands (giving a negative autocorrelation). 
 
3. Regression modeling 
 
 If Pearson’s correlation coefficient is a measure of the line-likeness of a scatter plot, 
shouldn’t we be able to draw this ideal line on the dots to see how close the dots get, sort of 
how qqline() draws the ideal line in a Q-Q norm plot? 
 Why yes, that’s just what we can do. You can compute the line using regression analysis 
(迴歸分析). The weird name is yet another confusing accident of history: it was first coined 
by Pearson’s predecessor Francis Galton (1822-1911), a British scholar with interests ranging 
from biology to math to psychology (and he was a half-cousin of Charles Darwin too). Galton 
noticed that tall parents tend to have normal-sized children, or more generally, that extremes 
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tend to “regress” (go back) to the mean over time. Pearson and others then extended the notion 
of regression to the mean to the idea that if we could keep collecting data forever, the mean of 
our sample would get closer to the “true” mean, so in a scatter plot more and more of the dots 
would “regress” towards the “true” line at the heart of the dots. Thus in any particular sample, 
when we draw a line through it, it’s an estimate of this ideal line. 
 The line derived from paired data is called a regression line (迴歸線) or line of best fit 
(最佳配適線). A related concept is a trend line (趨勢線), though this also includes wiggly 
lines without any simple formula. 
 Linear regression involves a linear (線性) equation like y = a + bx (we’ll review this 
math later). Other types of regression analyses involve a logarithmic function (對數) like y = 
a ln x, a polynomial function (多項式) like y = ax3 + bx2 + cx + d, a power function (乘冪) 
like y = axb, an exponential function (指數) like y = aebx, and so on. In this book, we’ll mainly 
focus on the first type (linear functions), but we’ll mention some of the others too. 
 Let’s look at these lines, starting with how to plot them, then how to get Excel or R to 
give us the regression equation and p values, and finally the math behind all of this. 
 
3.1 Plotting a regression analysis 
 
 What line(s) is (are) implied by Pearson’s r? This is so simple to plot that even Excel has 
built-in tool for it. First make a scatter plot, then right-click the mouse on any of the dots, and 
then choose Add Trendline (加上趨勢線: (R)). Note that you have the choice to add any of 
the above types of regression lines (linear, logarithmic, polynomial, power, exponential, 
moving average), with linear set as default. 
 R can do this too, of course. I’ll first demonstrate the commands, and explain how they 
work later. All you need to know for now is that lm() stands for “linear model”, that the a and 
b in abline() (“a-b-line”) stand for the a and b in the linear equation y = a + bx, and that the 
Y~X syntax represents an important kind of R object called a formula, here symbolizing the 
linear equation (you pronounce Y~X as “Y varies as a function of X”). Try it yourself, and 
judge whether you think that line is really the best way to fit a line into those dots, as shown in 
Figure 9. 
 
plot(AX,AY) # Fake data set A in scatterplots.txt 
regress.line = lm(AY~AX) # Linear model predicting AY from AX 
abline(regress.line) # Add the line to the existing plot 
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Figure 9. Fitting a line to fake data set A 
 
 If we do the same thing to the frequency-duration data, we get Figure 10. Look closely, 
you can see that yes, that trend line is indeed dropping a teeny-tiny amount. 
 
plot(fd$LogFreq, fd$Dur, xlab="Log frequency", ylab="Duration (ms)") 
abline(lm(Dur~LogFreq, data = fd)) # The data argument lets us avoid using $ 

 
Figure 10. Linear best-fit line for log frequency predicting duration 
 
 One benefit of regression is prediction. Since the line is associated with an equation, we 
can plug in any x, not just our actual x values, to get the best estimate for y (i.e., the y value of 
the line for x). This allows us to make real-life predictions about y based on what we know 
about x. Since this application is pretty common in business, Excel has a built-in cell function 
for it: =FORECAST(new-x, known-y's, known-x's) will give you the y values of the 
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regression line given any x value. Excel also has a built-in prediction function for exponential 
regression, also commonly used in business (and biology), called =GROWTH(). In the Land 
of R, where things are more scientific and elegant than in the Land of Excel, there is a more 
general function, predict(model, newdata), which generates predictions (y values) from any 
model given a set of new x values. More importantly, I’ve also emphasized that regression is 
the core of modeling, a key purpose of statistics. 
 Models are everywhere! To start with a trivial illustration of this, R uses formula objects 
like Y~X a lot. For example, in an earlier chapter we saw that you can count frequencies using 
the table() function, but you can get the same results with the xtabs() (cross-tabulate) function. 
A crucial difference is that xtabs() uses the syntax for formulas, with the dependent variable 
Y missing because it’s always the frequency (i.e., the formula is just ~X): 
 
super.word = unlist(strsplit("supercalifragilisticexpialidocious","")) # Split into letters 
table(super.word) 
 
super.word 
a c d e f g i l o p r s t u x 
3 3 1 2 1 1 7 3 2 2 2 3 1 2 1 

 
xtabs(~super.word) 
 
super.word 
a c d e f g i l o p r s t u x 
3 3 1 2 1 1 7 3 2 2 2 3 1 2 1 

 
 As a more philosophical example of the importance of modeling, suppose your model and 
my model both predict that as children get older, their vocabulary gets larger, but our models 
differ in a crucial way: you claim that kids learn one new word a day (a linear model), whereas 
I claim that each new word added to children’s vocabulary helps them learn two more (an 
exponential model). Merely observing that vocabularies increase is not enough to distinguish 
between these two models. Instead, we need to see which model gives a better fit to the actual 
data. 
 As an even more philosophical example, in the start of their book on minimalist syntax, 
Epstein and Seely (2006) use a regression metaphor to explain why they prefer theories that 
are simple (“minimalist”), even if they don’t seem to describe all the facts correctly. Building 
on their argument, consider two possible trend lines for the fake data set A, one that’s linear 
and one that’s a wiggly line touching every data point, as plotted in Figure 11. Note the lines() 
command (I had to put the dot x and y values in order, using the order() function): 
 
plot(AX,AY) # Plot those fake data points again 
abline(lm(AY~AX), lwd=2,lty=1) # Thick solid line: linear fit to data 
lines(sort(AX),AY[order(AX)],lty=2) # Thin dashed line: perfect fit to data 
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Figure 11. A metaphor for minimalist syntax 
 
 The linear trend line doesn’t match any of the data points perfectly, and is quite far from 
several of them, but it’s very simple and does a very good job at capturing the variance in the 
data (r2 =.96, as we calculated before). By contrast, even though the wiggly line is designed to 
hit every data point, it is very complicated and doesn’t offer any insights into what gives rise 
to this particular pattern of dots. Hence a simple sort-of-right model is better than a complex 
entirely-right model. It’s not just minimalist syntacticians who recognize this principle; the 
dashed line above represents a situation that statisticians call overfitting, and this is considered 
to be a bad thing. Among other things, the overfitted model makes no predictions: we have no 
idea what y value it predicts if we stretched the x-axis beyond 20. By contrast, we can predict 
exactly this value for the linear model very easily (e.g., for x = 25, the predicted value of y is 
about 25, which makes sense if you look at the plot): 
 
predict(lm(AY~AX),data.frame(AX=25)) # New data must be in a data frame 
 
       1  
25.22474 
 
3.2 Computing a linear regression in Excel and R 
 
 The regression model associated with Pearson’s correlation is called simple linear 
regression (簡單線性迴歸). It’s called regression, as I said, because it tries to find the line 
that the dots are “regressing” towards (i.e., are closest to). It’s called linear because the line is 
a straight line, where y is a linear function of x. It’s called simple (sorry if the math doesn’t 
seem simple enough) because y varies as a function of only one variable (x). In a later chapter 
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we’ll discuss multiple regression, which is part of the solution to the problem of the partially 
confounded variables of Freq, AoA and Fam, and is also the mathematical basis of ANOVA 
and lots of other fun stuff. 
 Strictly speaking, the linear regression line has the formula ŷ = a + bx, with ŷ instead of y, 
since it represents estimated values, not the actual observed values in y (ŷ is pronounced “y-
hat”: a little math “joke”). The formula for the real data is y = a + bx + ε, where ε represents a 
vector of random error, that is the difference between the line and each actual data point. A 
more common name for these error values is the residuals (殘餘值), since they’re what’s left 
over when you subtract the predictions made by the regression line from the actual data. 
 The variable y is often called the dependent variable (因變數), since its value depends 
on x, which is often called the independent variable (自變數), since as the input variable, x 
supposedly can do whatever it wants, or the predictor (預測變數), since x is supposed to 
predict y. In a correlation these roles are actually reversible, since the math can only test 
symmetric correlation, but in a regression you have to decide which variable is the “input” and 
which is the “output” since the goal is to build a model predicting one from the other. So 
normally what people do is use their real-world intuitions to decide which variable they think 
is “causing” the other; for example, it seems a lot more plausible for our frequency-duration 
data to consider frequency the independent variable (or predictor) for the dependent variable 
duration, rather than the other way around. 
 The values a and b are called coefficients (係數), since they go with (“co”) x, or estimates 
(since they estimate the idealized best-fit line). They represent values that stay fixed across the 
whole line, as x and y vary. If you remember high school math (don’t worry, you don’t need 
much here), b represents the slope (斜率) of the line, and a represents the y-intercept (y軸截

距), where the line crosses the y axis (i.e., the value of y when x = 0). Like the sign of r, the 
sign of b shows whether the line is going up or down, but unlike r, which reflects how line-like 
the data are, b reflects how steep the line is: b = 0 means totally horizontal, and b = ±∞ means 
totally vertical. 
 While geometrically b represents the slope of the line, conceptually it also relates 
indirectly to the effect size of x. If b = 0, the line is horizontal, so varying x doesn’t cause any 
change in y, meaning that the effect size of x couldn’t be any smaller. However, if b is of large 
magnitude (whether positive or negative), even a small change in x may predict a large change 
in y: a bigger effect size. To make slope a universal measure of effect size (so we can compare 
different models or even different data sets), we would first have to rescale both the x and y 
values into z scores, but we’ll discuss that in a later chapter. 
 Now let’s try finding the regression coefficients, starting with Excel. Take yet another 
fake data set (regex.txt) and put it into Excel, then add a linear regression line to the scatter 
plot (by right-clicking on a data point, remember?), as in Figure 12. The resulting linear model 
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is associated with the values in Table 1 (note that I removed the “0” in the r value, but not in 
b, since the slope can be any value). 

 
Figure 12. A scatter plot with linear regression line made in Excel 
 
Table 1. The key values for the regression line in Figure 12. 
 

Mx My sx sy r ŷ = a + bx  
a b 

10.50 5.81 5.92 4.56 -.30 8.23 -0.23 

 
 The easiest way to do regression in Excel is with the built-in regression (迴歸) tool in the 
Analysis ToolPak (opened by clicking 資料分析 in the Data menu). Select the exact range in 
your spreadsheet that represents the x values and y values (that is, just the numbers and their 
headers, if any, but not entire columns: like A1:B25, not A:B), and then make all the other 
usual choices about variable labels and output location. Note that in this tool, Y comes first, as 
in the equation ŷ = a + bx. 
 Running the regression analysis in Excel gives us three tables (with text automatically 
shown in Chinese, since I’m using the Chinese version of Excel), arranged in the array shown 
in Table 2 below. 
 The table in the upper left gives the absolute value of the correlation coefficient “R” (= r), 
the coefficient of determination (i.e., R 平方 = R2 = r2), adjusted R2 (which incorporates 
information about variance better than R2, as we’ll discuss in a later chapter), standard error 
(標準誤) for the model, and the number of data pairs. 
 The second table in Excel’s output is giving you ANOVA stuff, since ANOVA is just a 
special case of regression, as I’ve mentioned a few times already. We’ll discuss ANOVA 
several chapters later, but if you’re curious now, take a look at the p value (for some reason, 
given in Chinese as “顯著值” rather than the usual “P-值”). This tests the significance of the 
whole linear model predicting y from x; thus it’s the same as the p value you get when you use 
R’s cor.test() function. Note also that if you square the t value given by cor.test(), you get the 
F value reported here, aside from rounding (we’ll see why this is so in a later chapter). 
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Table 2. How Excel displays the output of a regression analysis 
 

迴歸統計  ANOVA      

R 的倍數 0.298286   自由度 SS MS F 顯著值 
R 平方 0.088974  迴歸 1 35.18139 35.18139 1.757951 0.201461 
調整的 R 平方 0.038362  殘差 18 360.2291 20.01273   
標準誤 4.473559  總和 19 395.4105    

觀察值個數 20        

 
 係數 標準誤 t 統計 P-值 下限 95% 上限 95% 

截距 8.228716 2.078109 3.959714 0.000919 3.862769 12.59466 
x -0.23001 0.173477 -1.32588 0.201461 -0.59447 0.134453 

 
 The third table gives information about the two coefficients of the model (i.e., a and b, 
here respectively labeled intercept [截距] and x (i.e., its coefficient b, or slope, or effect size). 
Notice that there are separate p values for each of these coefficients, something that will 
become very useful in later chapters. Why is the p value for x (b) identical to that for the whole 
correlation? Because x is the only predictor: makes sense, right? Note also that the y-intercept 
coefficient (a) is also significant. This is a common result in real research, because the intercept 
just reflects the default value of y (i.e., when x is zero), and that means y is rarely zero, since 
the dependent variable is usually something like reaction time or duration, which is never zero 
in real life. In our frequency-duration analysis, for example, the durations hover around 249 
ms. Thus even when the intercept is statistically significant, researchers usually ignore it 
anyway (though we’ll later see instances where it might matter). 
 Put together, then, the results for the fake data in regex.txt show that even though the 
intercept is statistically significant (p < .001), the coefficient for x is not “different enough” 
from 0 to be significant (p = .2 > .05). Thus we cannot reject the null hypothesis that the 
regression line is actually horizontal, even though Figure 12 shows a little bit of a slope. 
 You can get exactly the same tables in R, and R also gives you information about the 
residuals. The heart of the code here are the functions lm(), for creating the linear model (note 
the y ~ x formula), and summary(), for summarizing the linear model, particularly its 
coefficients and p values. 
 
regdat = read.delim("regex.txt") # Load in the same fake data set 
colnames(regdat) # In case you forgot what the variables arereg 
regdat.lm = lm(y ~ x, data = regdat) # The data argument means we don't need $ 
regdat.lm # Just shows the values of the intercept (a) and slope coefficient (b) 
summary(regdat.lm) # R^2, adjusted R^2, regression table: compare with Excel 
anova(regdat.lm) # ANOVA table: compare with Excel 
summary(regdat.lm)$r.squared # Just R^2; check ?summary.lm for more values 
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 Let’s end this section by finally returning to our frequency-duration data. Here’s the 
simple regression analysis in R (starting by reloading the data, in case you lost it), with our 
goal being to produce just the main output summary with the coefficients table. Note that R 
calls each coefficient an “Estimate”, and calls the p values “Pr(>|t|)”, to show that it’s a two-
tailed p value (do you see why it must be?) derived from the t value; see also “Std. Error” for 
standard error (SE). I’ll explain this stuff shortly. 
 
fd = read.delim("freqdur.txt") 
fd$LogFreq = log(fd$Freq) 
fd.lm = lm(Dur ~ LogFreq, data = fd) 
summary(fd.lm) 
 
Call: 
lm(formula = Dur ~ LogFreq, data = fd) 
 
Residuals: 

Min 1Q Median 3Q Max 
-

88.631 
-

16.185 -0.017 16.362 98.023 

 
Coefficients: 

 Estimate Std. Error t value Pr(>|t|)  
(Intercept) 252.6156 1.2288 205.580 < 2e-16 *** 
LogFreq -1.2011 0.3833 -3.134 0.00175 ** 

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 
 
Residual standard error: 24.89 on 1687 degrees of freedom 
Multiple R-squared:  0.005788,  Adjusted R-squared:  0.005199  
F-statistic: 9.822 on 1 and 1687 DF,  p-value: 0.001754 
 
 The p values confirm that in this huge sample, even the tiny negative slope of b = -1.2 is 
statistically significant. This slope coefficient implies that duration decreases by 1.2 ms for 
each increase of 1 in log frequency, so that’s a very tiny drop indeed, just as we saw in our plot. 
The intercept is also highly significant (p < .0001), and the estimated coefficient is around 253. 
Does this make sense? Yes: that number represents the expected duration when log frequency 
is zero, and so it’s quite close to the 249 ms mean of the overall data set, consistent with the 
basically horizontal regression line. This duration is obviously statistically different from the 
null hypothesis of 0 ms, which would be an impossibly short duration, and so, as usual, the 
intercept results are of no theoretical importance whatsoever. 
 By the way, if you only want to look at the part of the lm() results reporting the table of 
coefficients and such, you can extract it from the summary object using that $ operator: 
 
summary(fd.lm)$coefficients # See Value section in ?summary.lm for more info 
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 Another way to do this is to install a package that’s philosophically related to the 
tidyverse (introduced in chapter 2), though not (yet) a core part of it, namely broom (Robinson, 
2022), which gives you the function tidy() for making neat modeling outputs (as tibbles): 
 
library(broom) # Gotta install it first 
tidy(fd.lm) 
 
# A tibble: 2 x 5 

 term estimate std.error statistic p.value 
 <chr> <dbl> <dbl> <dbl> <dbl> 

1 (Intercept) 253. 1.23 206. 0 
2 LogFreq -1.20 0.383 -3.13 0.00175 

 
 As usual, the values in the tibble are more rounded than the ones that R shows by default 
(though only in the display, not their underlying values). Despite this, the tibble will also align 
the values by the decimal point, so it’s still easy to see their relative sizes. The tibble also uses 
header names with no spaces in them, making it easier to copy/paste the results into Excel and 
adjusting them into a table using the Text to Columns tool. 
 
3.3 The math of regression 
 
 Where did all these numbers come from? How is regression related to correlation? And 
how does all of this relate to probability and the logic of null hypothesis testing? Let’s find 
out.... 
 
3.3.1 Calculating regression coefficients and p values 
 
 We start by calculating the regression coefficients a and b that define the line that fits the 
data points as closely as possible, along the vertical dimension. That is, we find the line for ŷ 
= a + bx that minimizes the residuals (actual values minus estimated values: ε = y - ŷ). As a 
minimization problem, this is essentially a calculus problem, but there turns out to be a very 
simple solution (using algebra, ultimately derived from the z score formula; see Johnson, 2008, 
p. 63), based just on the values in Table 1, namely the means and standard deviations for x and 
y (Mx, My, sx, sy) and r (Pearson’s correlation coefficient): 
 

Slope of regression line:   𝑏𝑏 = 𝑟𝑟 𝑠𝑠𝑦𝑦
𝑠𝑠𝑥𝑥

 

Intercept of regression line:  𝑎𝑎 = 𝑀𝑀𝑦𝑦 − 𝑏𝑏𝑏𝑏𝑥𝑥 
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 Look again at the third Excel table, or the R table given by summary(regdat.lm): each 
row reports not just the coefficient and p value, but also two other things: the standard error SE 
and the t value. These numbers actually reflect the fact that regression is built out of one-sample 
t tests! Once again, here’s how you compute the t value for the one-sample t test: 
 
t test statistic:  𝑡𝑡 = 𝑀𝑀−𝜇𝜇

𝑠𝑠/√𝑛𝑛
= 𝑀𝑀−𝜇𝜇

𝑆𝑆𝑆𝑆
 

 
 In the case of regression, the means refer to the means for the coefficients. According to 
the non-directional null hypothesis, the null population mean is μ = 0, and we want to know if 
our sample mean M (i.e., the coefficient computed with for the regression equation) is 
significantly different from this, that is, if it’s an outlier in this population. According to the 
Central Limit Theorem, adjusted for the t distribution family, this population will have a 
standard deviation σ = (M-μ)/SE, and that’s what the t equation shows above. 
 For example, for the intercept in the Excel table, M = a = 8.228716 and SE = 2.078109, 
as reported in Excel or R’s tables, so therefore t = (M-0)/SE = M/SE = 8.228716/2.078109 = 
3.959713. Compare that with what Excel reports for t in that same table: 3.959714. Cool! 
 Now, where does the p value for the intercept come from? Just as for Pearson’s correlation 
coefficient, we use the t distribution from the t family where df = n-2, which here is 20-2 = 18. 
So here’s the two-tailed p value (remember that pt() gives you the area to the left of the input 
t values, so we need to make it negative to get a tail for us to double for the two-tailed value). 
Compare this with the reported p value of .000919. 
 
2*pt(-3.959714, df=18) 
 
[1] 0.0009186793 
 
 So the regression table isn’t just throwing crazy numbers around: they all make sense! 
Now you should try confirming the values for the other row in the table, for the slope (b). 
 I haven’t explained the SE values in the regression table yet, and ... I’m not going to 
explain them in detail. The particular version of SE used here is a bit tricky because we’re 
dealing with two coefficients, both a and b, so in a sense even a simple regression is a kind of 
multiple regression. The basic idea is the same as before, however: SE is computed by dividing 
a measure of “noise” (in this case, related to the residuals) by a measure of sample size (or df), 
essentially the “average noisiness” of your sample (in a sense that varies in detail from one 
statistical test to another). I’ll also postpone discussing the 下限 95% (Lower 95%) and 上
限 95% (Upper 95%) parts of Excel’s regression table, since they relate to those confidence 
interval things that I already told you I’m saving for later. 
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3.3.2 Regression versus correlation 
 
 As I noted earlier, regression is a model predicting y from x, so you don’t get the same 
results if you predict x from y. This is different from correlation, which shows the overall 
relationship between x and y. In mathematical terms, even though the equations for y ~ x and x 
~ y both contain Pearson’s r, they do so in opposite ways: 
 

Slope for line predicting y from x:   𝑏𝑏 = 𝑟𝑟 𝑠𝑠𝑦𝑦
𝑠𝑠𝑥𝑥

 

Slope for line predicting x from y:   𝑏𝑏 = 𝑟𝑟 𝑠𝑠𝑥𝑥
𝑠𝑠𝑦𝑦

 

 I try to show the effect of this difference visually in Figure 13, which is created like so: 
 
x = regdat$x # Saves space below 
y = regdat$y 
n = nrow(regdat) 
yx.lm = lm(y~x) 
xy.lm = lm(x~y) 
plot(x,y,xlab="x",ylab="y") 
abline(yx.lm,lwd=2,lty=1) # Thick solid line for y~x 
# Add thick dashed line for x~y (note predict() & order() functions: 
#  no easy way to add this usually useless thing): 
lines(predict(xy.lm)[order(y)],y[order(y)],lwd=2,lty=2) 
segments(x,y,x,predict(yx.lm),lty=1) # Distances to y~x 
segments(x,y,predict(xy.lm),y,lty=2) # Distances to x~y 
legend("topright",lty=c(1,2),legend=c("y~x","x~y")) 

 
Figure 13. Predicting y from x versus predicting x from y 
 



Ch. 5: Correlation and modeling 
 

31 

 In other words, the y~x line minimizes the distances of the dots to the line vertically, while 
the x~y line minimizes the distances horizontally. This difference is shown in Figure 13 by the 
solid vertical lines to the y~x line and the dashed horizontal lines to the x~y line. 
 By the way, notice that I again used predict(...)[order(y)] when I was adding the dashed 
line. That’s needed because otherwise the line() function will link the dots in the order they are 
given in the data frame, and since the y values are in random order, our “line” would end up 
looking like some child has scribbled all over the plot! 
 Anyway, you can also use either Excel or R to see how the results of the regression 
analysis relate to those you get from doing a simple correlation. Let’s illustrate this with R: 
 
cor(regdat$x,regdat$y)^2 # There's R^2 again 
cor(regdat$y,regdat$x)^2 # Order of the variables doesn't matter for correlation 
cor.test(regdat$x,regdat$y)$p.value # Order doesn't affect p-value either 
cor.test(regdat$y,regdat$x)$p.value # See? 
summary(lm(x~y, data=regdat)) # Same R^2 & p-value as for y~x, but dif. coefs. 
 
3.3.3 Simulations, likelihood, and probability 
 
 Our sample is just a sample, not the full “real” (alternative hypothesis) population. Thus 
when we find the best-fit line by minimizing the residuals, this line is just our best guess for 
the “real” best-fit line, rather than absolute truth. That is, based on our noisy sample, the 
regression line is the most likely best-fit line (i.e., the most probable model given our data). 
 To get a sense of this logic, you can create fake data generated by your own linear equation 
(this is how I generated the Dur variable from AoA, Fam, and Freq), and then see if regression 
can find it. For example, the following code creates the function faker() that randomly samples 
from a population with a specified “true” intercept and slope (by default, a = 0 and b = 1): 
 
faker = function(n=100, err.sd=1, a=0, b=1) { # Note default values 
 x=rnorm(n) # Create fake x 
 y=a+b*x + rnorm(n)*err.sd # So y = a + b*x + error (e.g. rnorm(n)*3 has err.sd=3) 
 return(data.frame(x,y)) # Output is a data frame of fake data 
} 
 
 Now, let’s play with the function, first looking at the effect of noisy data. Does it find the 
“real” coefficients a = 0 and b = 1? 
 
fake1 = faker(err.sd=3) # Create very noisy data 
plot(fake1$x,fake1$y) # Very messy pattern, since there's a lot of noise 
lm(fake1$y~ fake1$x) # Did it find the "real" coefficients a=0 & b=1? 
 
fake2 = faker(err.sd=0.1) # Create less noisy data 
plot(fake2$x,fake2$y) # Much clearer pattern, since there's not much noise 
lm(fake2$y~ fake2$x) # Did it do a better job finding a=0 & b=1? 
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 Now let’s try keeping the noise the same, while varying the sample size. You can also try 
changing a and/or b as well to see what happens. 
 
fake3 = faker(n=1000) # Create huge data set 
plot(fake3$x,fake3$y) # Medium-messy pattern 
lm(fake3$y~ fake3$x) # Did it find a=0 & b=1? 
 
fake4 = faker(n=10) # Create tiny data set 
plot(fake4$x,fake4$y) # Medium-messy pattern again, but less info about it 
lm(fake4$y~ fake4$x) # Did it still find a=0 & b=1? 
 
 Let’s end this discussion of regression math with another kind of simulation testing 
another kind of probability. Namely, when a regression is statistically significant, this means 
that the slope observed for our sample is an outlier in the null hypothesis population of slopes. 
Let’s use a resampling technique see how this probability logic works. 
 As we know, there is a tiny but significant correlation between log frequency and duration 
in the fd data set: 
 
summary(fd.lm)$coefficients # You might have to recreate this object... 
 
 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 252.6156 1.228796 205.5797 0 
LogFreq -1.20111 0.383258 -3.13394 0.001754 
 
 If the null hypothesis is correct, the actual slope is zero. We can generate a population of 
samples like ours, but with the mean slope of zero, if we put LogFreq and Dur, separately, into 
random order, so there is no relation between them at all (except by chance). We do this many 
times, and count how often one of these random unrelated samples shows a slope (just by 
chance) that is at least as big as our real slope, in either direction. The ratio of “hits” (where by 
chance the slope is bigger) compare to all of our random samples is thus an estimate of the 
two-tailed p-value. This should give us approximately the same p value as above (around .002). 
 The following code does this (with the random ordering handled by sample()), repeated 
10,000 times (so be patient - takes at least 16 seconds, maybe longer if you have a slow 
computer). By default, this code doesn’t plot anything, since this slows down the looping a lot, 
but if you want to see the samples being generated one by one (to compare them with our real 
sample), you can delete the # comment in the indicated “optional” line (this programming trick 
is called commenting out: it lets you temporarily turn off part of your program without deleting 
it entirely). Because the loop is kind of slow, I also use proc.time() to tell me how slow it is 
(in seconds), so I know whether I want to try to run this again. 
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real.slope = summary(fd.lm)$coefficients[2] # Our real slope (i.e., -1.201...) 
count.slopes = 0 # This will count slopes further from real one 
start.time = proc.time() # How long it takes for R to run something 
for (i in 1:10000) { # Be patient! 
 LogFreq.new = sample(fd$LogFreq); Dur.new = sample(fd$Dur) # Dif random orders 
 model.new = lm(Dur.new ~ LogFreq.new) 
# plot(LogFreq.new, Dur.new); abline(fd.lm,lwd=3); abline(model.new) # Optional! 
 rand.slope = model.new$coefficients[2] 
 if (abs(rand.slope) >= abs(real.slope)) { 
  count.slopes = count.slopes + 1 # Count "hits" 
 } 
} 
proc.time() - start.time # The time it took to run that loop 
count.slopes/10000 # Simulates the two-tailed p value of the linear model 
 
 When I ran this the first time, without plotting (waiting 9.79 seconds for the loop to finish), 
I got p = .0021. That’s quite close to the p value given by lm(), suggesting that linear modeling 
really is computing the probability that our sample is an outlier in this null population. If you 
turn on the plotting (you can stop it before it finishes by clicking the red STOP sign or hitting 
the ESC key), you’ll see that the thick line (the real slope) is almost always steeper than the 
randomly shifting but mostly horizontal thin lines (the null hypothesis slopes). 
 
4. Nonlinear modeling 
 
 Earlier I noted that one purpose of linear regression is just to add a trend line in a scatter 
plot, so you get a sense of how the data are “shaped”. But linear regression assumes that your 
data are pretty much linear, which isn’t necessarily the case. In this section, we’ll look at three 
things we may want to do when we encounter scatter plot data that seems to show nonlinearity 
(非線性) in the relation between x and y: describing plot shapes, modeling nonlinear relations, 
and testing significance without knowing what the actual relation is shaped like. 
 
4.1 If you just want a descriptive trend line 
 
 As I keep saying, it’s a good idea to make plots all throughout your data analysis process, 
even if you don’t end up using most of them in your final report. In the case of scatter plots, 
you can’t assume ahead of time that the best-fit line will end up being linear. So if you just 
want to get an intuitive sense of how linear your data actually are, you can do a kind of 
exploratory data analysis to look at the overall trend. 
 A good choice is local regression, which fits a series of (possibly curved) lines to each 
portion of your data, sticking them together to make a reasonably smooth curve for the whole 
set, hopefully without overfitting too much. Even Excel can do something like this; just click 
moving average (移動平均) when you add the line to your scatter plot. This calculates the 
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average x and y values within a given period (週期) and plots them (the term “period” indicates 
that Excel treats this as a time series method; other common terms are window or span). You 
can change how closely the line fits your data by changing the period so that it contains fewer 
data points (making a wigglier line, which is more objective but runs the risk of overfitting) or 
more data points (making a smoother line, but it runs the risk of smoothing too much, making 
a truly nonlinear pattern look linear). 
 Of course R does this job in a more sophisticated way, using a method called LOWESS 
(LOcally WEighted Scatterplot Smoothing) or a generalization called LOESS (LOcal 
regrESSion) (both pronounced low-ess). Either way, the method fits a series of semi-wiggly 
polynomial (多項式) functions that weight (emphasize) data points within the moving window. 
R has functions for both, but let’s just look at the more general loess() function. Similar to 
Excel’s moving average tool, loess() lets you adjust the smoothness using the span() argument, 
which ranges from 0 (no smoothing) to 1 (straight line). The following code creates Figure 14: 
 
DX = read.table("scatterplots.txt",T)$DX # If you don't already have them loaded 
DY = read.table("scatterplots.txt",T)$DY 
plot(DX,DY) # Kind of linear, but maybe not 
abline(lm(DY~DX),lty=2) # Dashed linear fit line 
loess.model.75 = loess(DY~DX) # Using default span = 0.75 
 
lines(predict(loess.model.75),lty=1,lwd=2) # Thick solid loess line for span = 0.75 (1) 
loess.model.25 = loess(DY~DX,span=0.25) # Using span = 0.25 
lines(predict(loess.model.25),lty=1) # Thin solid loess line for span = 0.25 (2 - see below) 
legend("topleft", lty=c(2,1,1), lwd=c(1,2,1), # Add a legend so we know what's what 
 legend=c("Linear","span=0.75","span=0.25")) # Part of legend function... 

 
Figure 14. Various types of trend lines in data set D 
 
 If the data really show a linear relationship, the loess line will be mostly linear (as in data 
sets A and B), and if the data show another type of systematic relationship (like the curved 
pattern in data sets G and H), it will show that too (try it!). This flexibility is what makes a 
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loess plot a kind of exploratory data analysis, rather than inferential statistics like linear 
regression: it doesn’t build a model, just tries to fit the data locally (in a later chapter we’ll see 
that there are methods for building regression models for arbitrarily wiggly lines, but you need 
to learn a lot of other stuff before I can explain them to you). 
 Figure 14 raises a small but annoying point. First, as I noted earlier in the chapter, plotting 
arbitrary lines in a scatter plot can get tricky, since the lines() function links data in the order 
it gets them, so if your predictor values are not in sequential order, you’ll get a mess. In the 
original plot, we were lucky not to have to worry about this, since DX was already ordered (1, 
2, ..., 20). More realistically, DX would be in random order. Try plotting the following: 
 
DX.mess = sample(DX) # Remember that this function scrambles the order 
plot(DX.mess,DY) # This will look random, because we only randomized DX 
loess.model = loess(DY~DX.mess) 
lines(predict(loess.model)) # That can't be right! 
 
 To get the loess line to make sense, you have to order the points by DX: 
 
loess.line.sort = predict(loess.model)[order(DX.mess)] # One way to do it 
plot(DX.mess,DY) # Same random dot pattern 
 
lines(loess.line.sort) # That's right! 
 
loess.line.sort2 = predict(loess.model, sort(DX.mess)) # Another way to do it 
plot(DX.mess,DY) # Same random dot pattern 
lines(loess.line.sort2) # Right again! 
 
 Fortunately, we can sometimes avoid all this annoyance: the abline() function draws a 
nice straight line even for messy data, and scatter.smooth() does the same for loess lines. Sadly, 
life is never perfect, so even though scatter.smooth() uses loess(), the defaults are different for 
reasons I don’t understand, so if you run the code below, the curve looks different from the 
loess line in Figure 14. This is another reminder that smoothing, and exploratory data analysis 
in general, is always a somewhat arbitrary process. 
 
scatter.smooth(DX.mess,DY) # Try adding labels, legend, other lines etc for practice... 
 
4.2 If you know what type of nonlinear pattern your data show 
 
 Maybe you have some reason to believe that your data should show some particular type 
of relation between x and y, even if you don’t know the precise coefficients. For example, 
maybe you know that the type of data you’re working with usually shows an exponential 
relationship, which is common in growth (like in the hypothetical example I mentioned earlier, 
where you hypothesize that each new word added to children’s vocabulary helps them learn 
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two more). In that case, just add the line for this type of relationship. In Excel, you do this by 
selecting the appropriate type of line when adding a line to your scatter plot, and in R, you 
express the relationship in that Y~X formula syntax. 
 To make this concrete, child language acquisition often shows a U-shaped pattern when 
plotting age (x-axis) against accuracy (y-axis). One famous case is in the accuracy curve for 
learning a regular morphological rule, as for the English verbal past tense (see Marcus et al., 
1992). At first kids are very accurate because they simply memorize everything, both present 
and past tense (saying walk-walked and run-ran). When they realize that there’s a general rule 
they begin to overapply it (saying walk-walked and run-runned), causing a drop in accuracy. 
Eventually they learn that there are exceptions to the rule (run-ran), and their accuracy goes 
back up again. 
 If you remember a few chapters back, a U shape is just what you get when you plot 
squares (平方數): the square of 0 is 0, but the squares of both negative and positive numbers 
are positive. Thus maybe the best model for U-shaped learning is a polynomial function, 
specifically this one: 
 
y = a + bx2 
 
 In this equation, a represents the overall height of the U above the x-axis (i.e., the value 
of y when x = 0), and b affects the orientation and shape of the U. In particular, if b is positive, 
the U will be a smile, but if b is negative, the U will be a frown. Moreover, if the magnitude of 
b is small, the U will be shallow and wide (closer to the horizontal straight line you get if b = 
0, when y = a), and if the magnitude of b is large, the U will be deep and narrow. In real child 
language data, the U tends to be a pretty wide (shallow) right side up U. 
 Let’s fake some data like that: 
 
set.seed(1) # So we get the same results 
age = runif(100)-0.5 # Pretend these are z-scores for child ages 
acc = age^2 + rnorm(100)/10 # Pretend these are scores on some test 
plot(age,acc) # The final plot is in Figure 15, after adding trend lines 
 
 Now let’s analyze it both using a linear equation (terrible fit of course) and using a 
polynomial equation (great fit of course). Note that in order to get R to know that we want to 
square x, we have to surround the x^2 inside the I() function, which means “identical”. That 
is, we want R to treat the squaring here as a genuine arithmetic operation, not as a combination 
of independent variables in a multiple regression model. The final result is in Figure 15. 
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poly.lm = lm(acc~I(age^2)) # Fit a polynomial function 
lines(age[order(age)],predict(poly.lm)[order(age)],lty=1) # Solid polynomial line 
abline(lm(acc~age),lty=2) # Add dashed straight line 
legend("topleft", lty=c(1,2), legend=c("Polynomial","Linear"), 
 bg="white") # Make legend box white to cover some of the dots (not ideal...) 

 
Figure 15. Polynomial regression fits polynomial data better than linear regression 
 
 Because this curved line is associated with an actual regression equation, we can also take 
a look at the coefficients (here, a and b) and see if they’re statistically significant (below I just 
show the part of R’s output text with the coefficients table). Since we faked this data set with 
a = 0 and b = 1 (do you see how I know?), it’s nice that the analysis estimates a as almost zero 
(-0.00086) and b as almost 1 (0.987343). Since a is basically zero, it’s not significant (p = 
9.51E-01 = .951 > .05), but b is significant (p = 6.67E-10 = .000000000667 < .0001). If you 
feel like it, you can confirm that each p value represents two times the area in the left tail of 
the t distribution with df = n-2, where t = “Estimate” (coefficient) divided by “Std. Error” (SE). 
 
summary(poly.lm) 
 Estimate Std. Error t value Pr(>|t|) 
(Intercept) -0.0008567 0.0139542 -0.061 0.951 
I(age^2) 0.9873428 0.1442250 6.846 6.67e-10 

 
 Yet another family of nonlinear models is based on logarithms. We’ll come back to the 
most important such model in the chapter on logistic regression, but right now let’s take a quick 
look at how logarithms can help test if a lexicon obeys Zipf’s most famous law, about there 
being a lot more low-frequency words than high-frequency words. More specifically, this law 
says that there is an inverse relation between a word’s frequency (number of tokens in a corpus) 
and this word’s frequency rank (whether it’s the most frequent, second-most frequent, and so 
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on). That is, frequency (f) and frequency rank (r) are related like so (see Bentz et al., 2014, for 
details and more complex versions of the equation): 
 

Zipf’s law (simplified version): 𝑓𝑓𝑟𝑟 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟

 

 
 In plain language, this equation says that the second-most frequent word will have about 
half as many tokens as the most-frequent word, the third-most frequent word will have about 
one third as many tokens as the most-frequent word, and so on. If we had all the time in the 
world, we could test this hypothesis on some real corpora, but I’m just going to give you some 
fake data so we can focus on the logarithmic part instead. 
 So here’s our fake corpus data: 
 
freqmax = 1000 
wordrank = 1:100 
wordfreq = freqmax/wordrank 
 
 If we plot these two variables, we get a pretty little curve, as shown in Figure 16. I hope 
the shape looks familiar from our earlier real corpus analyses! 
 
plot(wordrank, wordfreq) 

 
Figure 16. A fake word-frequency distribution based on Zipf’s law 
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 Now, we could fit a curved line to all those dots, but there’s an easier and more insightful 
method for showing that our data set obeys Zipf’s law. This method is based on the useful facts 
that the log function turns multiplication into addition (log(a*b) == log(a) + log(b)) and turns 
a power into a multiplier (log(a^b) == b * log(a). This works even if the power is negative (1/a 
== a^(-1)). So look what happens when we take the log of both sides of the Zipf’s law equation: 
 

𝑓𝑓𝑟𝑟 =
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟

 

log 𝑓𝑓𝑟𝑟 = log
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟

= log 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 + log 𝑟𝑟−1 = log 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 + (−1) log 𝑟𝑟 = log 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 − log 𝑟𝑟 

 
 See that? If we take the log of both of our fake data variables, we should get an inverse 
correlation that’s linear (log(fr) == log(fmax)-log(r)), which makes the correlation not only 
visually obvious but also easy to fit using a linear model, as shown in Figure 17: 
 
log.wordrank = log(wordrank) 
log.wordfreq = log(wordfreq) 
plot(log.wordrank, log.wordfreq) 
abline(lm(log.wordfreq~log.wordrank)) 

 
Figure 17. Confirming Zipf’s law using a linear model on log rank and log frequency 
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4.3 If you know nothing about your distribution but still want to test statistical 
significance 
 
 What if we have a scatter plot, don’t know what the best-fitting equation is, and want to 
do more than just draw a line? In particular, what if we want to know whether the correlation 
is statistically significant, even if it’s not very linear? Or what if we know that x or y is highly 
skewed, and there’s no way to transform them into normal distributions, and thus we can’t rely 
on the areas under the normal distribution (or the related t distribution family) to compute the 
p value, as we do with a parametric test like Pearson’s correlation? 
 The traditional solution to this kind of problem is to use nonparametric  (or 
distribution-free) tests, which don’t make any assumptions (or at least not many) about the 
shape of distributions. Nonparametric statistics became popular after the publication of Siegel 
(1956), which caused many researchers to be more cautious about using parametric tests on 
non-normal data (sort of how Gosset, AKA “Student”, convinced people that they could get 
more accurate p values if they used sample-size-based t distributions instead of the universal 
normal distribution). 
 Because nonparametric tests are still widely used, I’ll explain the nonparametric version 
of Pearson’s correlation in a moment, but first some caveats. 
 Remember Type I errors and Type II errors? The first type happens when you get a false 
alarm (you think there’s a pattern when there really isn’t), and the second type happens when 
get a miss (you think there’s no pattern but there really is). These two types of errors 
complement each other: their risks can never both be zero at the same time. In the case of 
nonparametric tests, since they assume (almost) nothing about the distribution, they are less 
likely to cause a Type I error due to violation of some crucial statistical assumption. But at the 
same time, the fewer assumptions a test makes, the less information it uses, and so the less 
powerful it is, resulting in an increase in Type II errors. So if you do know your distribution 
(e.g., normal), then using a test specifically for that type of distribution (e.g., parametric) will 
use more information, and will make your analysis more powerful. 
 Moreover, nonparametric tests aren’t magic. They are still based on the logic of making 
inferences about populations via idealized distributions. Put technically, most nonparametric 
tests are still asymptotic (漸近的): they get more and more accurate as your sample size gets 
larger and larger (reaching for that idealized asymptote). In statistics the only exception to this 
bigger-is-better principle is exact tests, like the binomial test we saw in a previous chapter, 
which are computed directly from probability, rather than indirectly in terms of idealized 
distributions. But most nonparametric tests are not exact tests. 
 On top of all this, in the decades since Siegel’s book came out, increasing computer power 
has allowed statisticians to run simulations that show that parametric tests are much more 
robust than had been thought. That is, even when their assumptions are seriously violated, they 
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really don’t make as many Type I errors as you might expect (Glass, Peckham, & Sanders, 
1972; Rasch & Guiard, 2004). Why? Because the normal distribution is normal: it reappears 
everywhere in nature, and many different mathematical functions point towards it. In particular, 
as we saw in an earlier chapter, the Central Limit Theorem says that the distribution of sample 
means (used to compute standard error) tends to become more normal the larger your sample 
is, even if the population itself is not normal at all (bimodal, in the case of our demo). 
 Nevertheless, just as it’s good to know how to make unbiased loess plots to look for trends 
in a scatter plot, prior to making any assumptions about your data, it’s also good to know how 
to test for a correlation in data even without checking if all of Pearson’s assumptions are met. 
 So here goes. Very soon after Karl Pearson invented his correlation coefficient, a British 
psychologist with the weirdly similar name of Charles Spearman (1863-1945) came up with a 
new way to calculate correlations that did not depend (as much) on distribution shape: 
Spearman's rank correlation coefficient (史匹曼等級相關係數). (Spearman also invented 
factor analysis, one of the oldest data exploration methods.) 
 As you can tell from the name, the idea of a Spearman rank correlation is to compare the 
ranking (等級) of each x and y value in their respective sets, not their actual values (it doesn’t 
matter if you rank them from smallest to largest or largest to smallest, as long as you do it the 
same way for both variables). If there’s a positive correlation, the lowest-ranked x values will 
tend to be paired with the lowest-ranked y values and the highest-ranked x values with the 
highest-ranked y values, and if there’s a negative correlation, this relationship will be reversed. 
Yet by throwing out all numerical details except for the ranking, Spearman’s approach throws 
out distribution shape too. Computing the rank position of a value doesn’t require us to compute 
the distribution parameters mean or standard deviation at all, making this a nonparametric test. 
 Mathematically, Spearman’s original approach works like this. First you figure out the 
ranking of each x and each y within its own set. If you want to compute this by hand, which 
nobody really does, you could use Excel’s =RANK() function (where 1 = largest value) or R’s 
rank() function (where 1 = smallest value). The ranking gets a little annoying when numbers 
“tie” (不分勝負); for example, in the vector (5, 5, 9), you can’t tell which 5 should be #1. In 
that case, you have to compute the mean of the ranks that they would have if they were different: 
here we would get the ranks (1.5, 1.5, 3), since if one of the 5s were a 4 or a 6, their ordered 
ranks would have been (1, 2), making the mean rank 1.5. If you use Excel’s =RANK() function, 
you have to do these adjustments by hand or with clever logic functions, but if you have Excel 
2010 or later, you can use the function =RANK.AVG(), which handles the ties with averages, 
as just described. R’s rank() does this averaging automatically too: 
 
rank(c(5,5,9)) 
[1] 1.5 1.5 3.0 
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 Spearman proposed that you just apply Pearson’s r formula to the ranks instead of to the 
raw data. This gives you a value that’s sometimes symbolized as rs, for Spearman’s r, but 
sometimes it’s symbolized ρ, the Greek letter rho (though, confusingly, ρ is also often used for 
the population version of Pearson’s sample r, similar to how μ is the population version of 
sample M). 
 Since the p value for Spearman’s rs is traditionally computed using Pearson’s formula, 
which relies on the t distribution, larger sample sizes are still more reliable than smaller sample 
sizes: Spearman’s test may be nonparametric, but it’s still asymptotic (i.e., it’s not an exact 
test). Moreover, you shouldn’t be surprised to learn that the more ties there are in the ranks, 
the less reliable rs will be (but this is true for Pearson’s too, where lots of ties would imply a 
non-normal distribution). It’s also important to note that Spearman’s rs is really only useful for 
testing significance. Unlike the coefficient of determination (r2) derived from Pearson’s r, rs 
doesn’t tell you how well x predicts y. It also isn’t associated with any kind of equation that 
could be used to draw a trend line. 
 The easiest way to compute Spearman’s rs in Excel 2010 or later is to use the 
=RANK.AVG() function to get the ranks, and then use =CORREL() on the ranks. But if you 
have an older version of Excel that only has the =RANK() function, you can take a look at the 
cell functions in spearman.xls, which computes rs using an equation derived (via clever 
algebra) from Pearson’s equation when applied to ranks. 
 All of this is a lot easier in R, which has a built-in function for computing Spearman’s 
correlation coefficient and its associated p value. More precisely, our old functions cor() and 
cor.test(), which by default compute Pearson’s correlation coefficient and correlation 
coefficient plus p value (respectively), will compute Spearman’s instead if you change the 
method argument from the default to "spearman". Try it on the nonlinear data in fake data 
set H; note that the Pearson and Spearman p values are similar for this shape, though the 
correlation coefficients are different: r < rs, because rs ignores the nonlinearity. 
 
fakecor = read.delim("scatterplots.txt") # In case you forgot 
attach(fakecor) # So we can refer to the columns more efficiently 
plot(HX, HY) # In case you forgot 
cor.test(HX, HY) 
cor.test(HX, HY, method="spearman") 
 
 Table 3 shows the Spearman’s rs values that I got for all of the fake datasets in 
scatterplots.txt (check if I did them right!). The most important differences between Pearson’s 
and Spearman’s results are for data set H (as we just saw) and for I (the outlier doesn’t affect 
the ranking either, so the ranked correlation is almost zero, matching our intuitions). Both tests 
still show the lowest correlation for the bell-shaped scatter plot in G, since this is not a 
monotonic function (a monotonic function makes values consistently go only up or down, not 
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both up and down like this one does), so ranking won’t be able to distinguish the two tails. 
That’s why it’s not really true that Spearman’s correlation is a totally “distribution-free” test. 
 
Table 3. Pearson versus Spearman 
 

  A B C D E F G H I 

Pearson r .977 -.972 -.242 .727 .836 1 -.138 .829 .897 
p 1.4e-13 1.0e-12 .30 .0003 4.3e-06 0 .56 6.4e-06 8.6e-08 

Spearman rs .967 -.965 -.242 .765 .872 1 -.143 1 .060 
p 6.6e-06 6.5e-06 .30 .0001 0 6.0e-06 .55 6.0e-06 .80 

 
 Maybe you noticed something weird about the output that R’s cor.test() function gives 
when you set method = "spearman". Even though I just told you that Spearman’s original 
test is just Pearson’s asymptotic test applied to the ranks, R was written by computer nerds, 
and they decided to turn Spearman’s test into an exact test after all. As you can see if you study 
the Details section for the help page (type ?cor.test), if you have fewer than 1,290 pairs of x 
and y, this function will compute the exact p value by comparing the ranks observed in your 
data against all possible ranks, to see how improbable your particular ranking is compared with 
chance. This is called a permutation (置換) method (we simulated this in section 3.3.3 when 
we generated 10,000 random correlations from our LogFreq-Dur set). 
 R doesn’t let you turn off this default, but we can compare the exact p values with the 
asymptotic p values (i.e., running Pearson’s test on the ranks) like so: 
 
cor.test(CX,CY,method="spearman")$p.value # The exact Spearman p value 
 
[1] 0.3023548 
 
cor.test(rank(CX),rank(CY))$p.value # The asymptotic Spearman p value 
 
[1] 0.3037551 
 
 If we have ties, though, the exact setting in R’s cor.test() function doesn’t work. For 
example, suppose you measure accuracy for a language learner at three ages, and get the series 
of scores (5, 5, 9), as in our example above. Is there a significant improvement here? Pearson’s 
r isn’t ideal, since neither age nor the scores are normally distributed, and there’s no reason to 
think that any correlation will be linear. But Spearman’s rs faces the “ties” problem, so if you 
run this, you’ll get the warning “Cannot compute exact p-value with ties”, suggesting that the 
results come from the asymptotic Spearman’s test: 
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kidage = c(1,2,3) 
score=c(5,5,9) 
cor.test(kidage,score,method="spearman") 
cor.test(rank(kidage),rank(score)) # Same results, without the warning 
 
 In any case, if you calculate a Spearman p value with R, you need to know how to report 
it. Remember that to report the results of a Pearson correlation test, the format is like this: r(df) 
= ..., p < ... (or p = ...). Since R computes the exact version of Spearman’s test by default, and 
the rest of the time uses a ranking-based estimate rather than going through Pearson’s 
correlation, the concept of degrees of freedom (df) isn’t involved, so instead you would report 
the sample size n (or N, in APA style): rs = ..., p < ... (or p = ...), N = .... 
 Finally, if you look at the other method options in cor.test(), you’ll see that in addition 
to "pearson" (the default) and "spearman", there’s also "kendall", which is named after 
British statistician Maurice Kendall (1907-1983), who explained his method in Kendall (1938). 
The full name of this kind of correlation test is Kendall’s tau (for the Greek letter τ = “t”), 
since that’s the thing you compute instead of Pearson’s r or Spearman’s ρ. Like Spearman 
correlation, it’s a nonparametric test based on ranking rather than the raw values, so it works 
no matter how weirdly shaped your distributions are. However, Kendall’s tau is computed in a 
conceptually simpler way. Rather than looking at the rankings of all of the x and y values, it 
just checks each pair of points (xi, yi) and (xj, yj) to see if they are concordant (i.e., consistent 
in ranking), that is, if xi and xj are ranked in the same order as yi and yj. The more concordant 
pairs relative to discordant pairs (with different x and y ranking), the stronger the overall 
correlation. Of course, both of these numbers will go up as the sample size gets larger, but we 
want our final correlation score to lie between -1 and 1. That’s easy to take care of: in a sample 
of n data points, there are exactly n(n-1)/2 pairs (n possibilities for the first point and n-1 for 
the second point, divided by the two orders). So if C = number of concordant pairs and D = 
number of discordant pairs, then tau is: 
 

Kendall’s tau:  𝜏𝜏 = 𝐶𝐶−𝐷𝐷
𝑛𝑛(𝑛𝑛−1)/2

= 2(𝐶𝐶−𝐷𝐷)
𝑛𝑛(𝑛𝑛−1)

 

 
 Here’s how this works in R. Note that I’ve changed one of the values in score to avoid a 
tie, since ties are neither concordant nor discordant, so some extra strategy is needed. There are 
three standard options, called tau-a, tau-b, and tau-c, but I won’t bother explaining them; see  
https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient#Accounting_for_ties. 
Annoyingly, R doesn’t say which one of these three options it uses, so I leave figuring this out 
as an exercise for the interested reader - ha! In any case, as with Spearman’s correlation, R 
gives you an exact p value for Kendall’s tau unless you ask it otherwise, but never bases it on 

https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient%23Accounting_for_ties
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Pearson’s correlation, so you would report the results similarly to Spearman’s correlation, 
namely with n rather than df: rτ = ..., p < ... (or p = ...), N = .... 
 
kidage = c(1,2,3) 
score=c(6,5,9) 
n = length(kidage) 
# 3 
x.pair.ranks = c(kidage[1]> kidage[2], kidage[1]> kidage[3], kidage[2]> kidage[3]) 
# FALSE FALSE FALSE 
y.pair.ranks = c(score[1]> score[2], score[1]> score[3], score[2]> score[3]) 
# FALSE FALSE FALSE 
C.val = sum(x.pair.ranks == y.pair.ranks) 
# 2 
D.val = sum(x.pair.ranks != y.pair.ranks) 
# 1 
tau = 2*(C.val-D.val)/(n*(n-1)) # 0.3333333 
cor.test(kidage,score,method="kendall") # tau = 0.3333333, p = 1 
 
 Spearman’s correlation is used more often than Kendall’s tau, because of the former’s 
close relation with the even more commonly used Pearson’s correlation, but the latter has been 
claimed to be better for statistical modeling, including quantifying effect sizes (at least 
according to the test’s creator; see Kendall & Gibbons, 1990). But I thought I would explain it 
anyway, in case you run across it in the course of your statistical career. 
 
4.4 The grand finale 
 
 Let’s end the chapter by returning to the fd data set, and plot our original frequency-
duration data frame, including AoA, Fam, Freq, and Dur (but not Word, which just gives 
identification numbers). As we saw at the beginning, R’s built-in plot() function gives a pretty 
interesting result, but there’s an even more useful variant in another package: languageR, 
originally developed for the highly influential statistics-for-linguistics book Baayen (2008). 
After you download this package and install it, you can run the function pairscor.fnc(), which 
combines scatter plots, loess lines, and both Pearson’s and Spearman’s correlations (and their 
p values), and shows you histograms for each individual variable as well! 
 Here goes: 
 
library(languageR) # You have to install it from the internet first 
fd = read.delim("freqdur.txt") # In case you lost it 
pairscor.fnc(fd[,2:5]) # Just the raw variables, not the lognormed frequencies 
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 The result is shown in Figure 18. This isn’t something that you’d put into a final report, 
but it is a very helpful tool for you to look at while you’re doing your research, to give yourself 
a sense of what your data look like. In other words, it’s a great tool for exploratory data analysis. 
 

 
Figure 18. Everything you might want to know about the data in freqdur.txt 
 
5. Summary 
 
 Well, what did you learn in this chapter? I don’t know, but I know what I tried to teach 
you, with modeling at the heart. The parametric test (based on means and standard deviations) 
that gives you Pearson’s correlation coefficient r measures the relationship between two 
variables (and the coefficient of determination, r2, even tells you the proportion of variance in 
one variable that is predicted by variance in the other). Pearson’s test also gives you a p value 
(assuming that your sample is not too small and seems to be normally distributed, since it’s an 
asymptotic test that depends on t distributions). This relationship can be modeled using a 
simple linear regression equation, defined by an intercept and a slope coefficient (both of which 
can be tested for significance with their own p values). You can draw the line associated with 
this equation on your scatter plot, in both Excel and R. R also has a general type of object for 
expressing a model formula: Y~X. If the relationship isn’t linear, you can draw a descriptive 
trend line using moving averages or a loess line, or formalize the relationship with a nonlinear 
model like a simple polynomial, or compute a p value no matter what the distribution is like 
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using Spearman’s correlation or Kendall’s tau, both of which work even for tiny data sets, 
using an exact test. 
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