
Chapter 13
The past and future of statistics: Bayesian modeling

James Myers

2022/5/14

1. Introduction

 Almost everything that we’ve done in this book, especially all those tests that compute all
those p values, is built on an approach to probability called frequentist. This is just a fancy
term for the idea that the probability of an outcome is the frequency the outcome occurs divided
by the total number of all possible events. This approach, which seems to be the most “objective”
way to define probability, has dominated statistics since at least the early twentieth century.
 However, in recent years an alternative (though very old) approach has grown
dramatically in popularity: Bayesian statistics (I’ll explain the name shortly). This takes a
“subjective” approach to probability, interpreting it as the strength of one’s belief in a
hypothesis. This sounds like a subtle philosophical distinction, but it gives rise to dramatic
differences in the workings and conclusions of Bayesian statistics, as compared with the more
familiar traditional frequentist statistics.
 We’ll get into the details below, but the core idea of Bayesian statistics is that you start
with a prior belief in a hypothesis and a sense of the likelihood (似然) that the hypothesis will
generate this versus that kind of observation. Then you observe some evidence, which leads
you to update your belief in the hypothesis to a posterior state. If you collect more evidence,
this posterior becomes your new prior, and the cycle starts over again.
 This simple idea differs from the frequentist approach in two major ways: (1) Bayesian
statistics uses the evidence to learn about the abstract hypothesis (bottom-up reasoning); (2)
prior belief can affect the influence of the evidence (e.g., if you really love your initial
hypothesis, you will need a lot of contrary evidence to change your mind). By contrast: (1) in
the frequentist approach we start with the null hypothesis, imagine all the possible samples that
could be generated by it, and check if our actual sample fits this pattern (top-down reasoning);
(2) our prior belief in the null hypothesis versus alternative hypothesis plays no role at all.
 The major advantage of Bayesian statistics is that its core logic closely matches how
people intuitively think about probabilities. Many of the warnings I gave throughout the book
when using frequentist statistics, relating to the null hypothesis, p values, confidence intervals,
multiple comparisons, and other things, are necessary because the human brain naturally wants
to think in Bayesian terms, so you have to actively suppress these intuitions when you do
traditional statistics. Similarly, as I’ve already mentioned in the probability chapter, Bayesian
logic provides an insightful description of how scientists test hypotheses and draw conclusions

Ch. 13: Bayesian modeling

2

from their observations. No scientist can get truly passionate about falsifying the null
hypothesis, which is what they’re required to do if they use traditional statistics. Instead, they
want to see how their observations affect their confidence in their research hypothesis, and
that’s just what Bayesian statistics calculates for you.
 The major disadvantage of Bayesian statistics is that it is difficult to compute. Some would
argue that it’s also problematic to start the calculations with subjective intuitions about prior
probabilities, but as we’ll see, subjectivity sneaks into traditional frequentist statistics too. In
fact, Bayesians would say that since subjectivity is unavoidable in any human activity,
including science, it’s best not to be sneaky about it.
 So the real main difficulty of Bayesian statistics is the computation. Even though the core
ideas go back centuries, running a Bayesian analysis, even on very simple data, requires a
powerful, fast computer, since like many of the methods we’ve discussed in the past few
chapters (logistic regression, generalized additive modeling, mixed-effects modeling), only the
very simplest Bayesian analyses can be solved using fixed equations. The rest require looping
through estimation algorithms, and that takes powerful, fast computers.
 Another difficulty with Bayesian statistics is that its scope is potentially just as vast as all
of traditional statistics, so there’s no way I can give you a completely satisfying introduction
to it in just one chapter. It would be quite possible to write an entire statistics textbook entirely
on Bayesian methods, and in fact there are many such books (e.g., Dienes, 2008; Jaynes, 2003;
Gelman & Hill, 2007; Gill, 2014; Kruschke, 2015; Lee, 2004; Lynch, 2007). Of all of these
books, the easiest book for beginners is probably Kruschke (2015), though even it is quite a bit
more “mathy” than the usual introductory statistics book. For less mathematically heavy
overviews of the core ideas, you can also read about the history of Bayesian statistics in
Salsburg (2001) and McGrayne (2011), see how Bayesian logic may apply to the philosophy
of science, as argued by Howson & Urbach (2006), or ponder the idea that maybe even the
study of history would benefit from Bayesian logic, as argued by Carrier (2012).
 As for this chapter, my goals are more modest: explain why Bayesian statistics is getting
so popular now, describe how to use it to do simple things that traditional statistics can’t do at
all, and give you a small sense of how it could be applied to handle more complicated (i.e.,
realistic) situations.

2. The Bayesian way

 I claimed above that Bayesian statistics is fundamentally more intuitive than traditional
statistics. I’ll start this section by trying to convince you that this is true. Then I’ll explain the
simple mathematical core of Bayesian statistics, called Bayes’s rule. Finally I’ll explain a very
simple method that uses Bayes’s rule to do something impossible in traditional statistics: argue
for the null hypothesis.

Ch. 13: Bayesian modeling

3

2.1 Why Bayes?

 Bayesian statistics is named after the British amateur mathematician Thomas Bayes
(1701-1761), who never published his work while alive and left it to other mathematicians, and
future generations, to work out the details. I’ll get into these details later, but for this section
all we need is the informal description I gave in the introduction: it describes how evidence
affects a researcher’s belief in a hypothesis.
 This description makes Bayesian statistics sound very subjective, and this is its most
controversial aspect. Yet in all other ways, Bayesian logic is clearly superior to frequentist
logic, and even its supposed subjectivity can be justified.
 As we’ve seen throughout this book, frequentist statistics is heavily focused on the p value,
yet as we’ve also seen, the p value is easy to misunderstand. As Cohen (1994, p. 997) puts it:
“What we want to know is ‘Given these data, what is the probability that [the null hypothesis]
H0 is true?’ But ... what [the p value actually] tells us is ‘Given that H0 is true, what is the
probability of these (or more extreme) data?’“
 By contrast, Bayesian statistics doesn’t use p values at all, and instead tells us more
directly what we really want to know, which is this: “Given these data, what is the probability
that that our research hypothesis H1 is true?”
 One big problem with the p value is that it represents the probability of the null hypothesis,
and null hypotheses are often quite implausible, making them so easy to reject that it’s not clear
what if we’re learning anything from them at all. For example, as we’ve seen, almost any
correlation with linguistic variables will turn out to be statistically significant, if you have
enough data. But that doesn’t mean the correlation is big enough to mean anything in real life.
By contrast, Bayesian statistics doesn’t give special status to the null hypothesis, but treats it
as just one of many possible hypotheses, and careful consideration is given to choosing
plausible alternatives.
 On the other hand, sometimes our research hypothesis is the null hypothesis, and then
traditional statistics really cannot help us at all. This is a pretty common situation in linguistics,
since grammar is based on invariances. In syntax, dog and linguistics are both nouns, so at
some level they should be treated exactly the same way; in phonology, [p] and [ph] are both
allophones of the English phoneme /p/, so again, there should be a level where they’re exactly
the same. So if you hypothesize such invariances, you predict that the right sort of study on
them will show no difference.
 But as I’ve repeated endlessly throughout this book, traditional statistics doesn’t let you
“accept” the null hypothesis. If you can’t reject it, all you can say is that you failed to reject it:
absence of evidence (for a difference) is not the same as evidence of absence (of a difference).
This is counterintuitive: if you have lots of well-collected evidence and none of it shows a

Ch. 13: Bayesian modeling

4

difference, why doesn’t that count as evidence for the lack of a difference? Indeed, that’s
exactly what Bayesian statistics lets you do, as we will see.
 Another big problem with frequentist statistics is that despite calling itself “objective”, it
actually depends a lot on the researcher’s subjective beliefs, just in indirect and tricky ways.
I’ll illustrate this with an example based on one in Kruschke (2015, pp. 300ff), modified in
linguistic terms. Suppose a linguist hypothesizes that a certain sentence is ungrammatical. She
asks 25 people to give binary good/bad judgments on this sentence, and only 8 of them accept
it, while the remaining 17 reject it. Does this imply that the sentence is truly unacceptable? (To
keep things simple, we’ll ignore the experimental design flaws: the linguist really should have
a control sentence to compare with, and using just one sentence raises the “language-as-fixed-
effect” fallacy.)
 In traditional statistics, we know how to test this research hypothesis against the null
hypothesis that the random probabilities for acceptability are equal: we use a binomial test.
Since the linguist’s research hypothesis is directional, let’s use a one-tailed test (since we’re
talking about math here, not publishing a real paper, and we want to keep the probability logic
as simple as possible). But the results are not significant: the one-tailed p = .05387607 > .05
(try it!).

pbinom(8, 25, 0.5)

 But note that this analysis assumes that the linguist decided ahead of time that she would
test exactly 25 sentences. What if she actually was trying to collect eight “yes” responses, and
kept asking people until she got her eighth “yes”, and that just happened to be the twenty-fifth
person? Frequentist statisticians say that you should never do this because it undermines the
assumptions of the standard test. But it happens a lot in real life, when researchers decide to
stop their research based on the results they’ve collected so far, rather than fixing on a specific
sample size ahead of time.
 What is the probability that the eighth “yes” will happen to come from the twenty-fifth
person? We can’t use the binomial distribution, but we can use a related one called the negative
binomial distribution (a generalization of the Poisson distribution). Of course R has functions
for this, including one for computing probability: pnbinom() (if you want to see what this
distribution looks like you can use plot() and dnbinom(), as we did for the binomial, normal,
t, F, and Poisson distributions in earlier chapters).
 The negative binomial analysis gives us a totally different p value from before. The one-
tailed p = .002275692 < .05 is significant (try it)!

pnbinom(8, 25, 0.5)

Ch. 13: Bayesian modeling

5

 Kruschke (2015) notes that the p values here are not as objective as they seem: exactly
the same situation can arise in the real world, but whether we use the binomial or the negative
binomial distribution depends on the linguist’s intentions, which is ultimately a private part of
her psychology, not something that critical outsiders can check for themselves.
 Kruschke also points out that the null hypothesis that “yes” and “no” have equal
probabilities was unrealistic in the first place, and as linguists, we know this is true for this
particular situation too. Of course the linguist must have already observed some asymmetry, or
else why did she want to run the experiment at all? Thus either way she computes the p value,
it doesn’t actually test her research hypothesis. Kruschke concludes that it’s better for
researchers to be honest about their prior assumptions, instead of pretending to be “objective”,
and plug those prior values into a Bayesian analysis so everybody can critically examine it.
 Another example of hidden subjectivity in traditional statistics concerns multiple
comparisons. Remember that in the first ANOVA chapter we proved that if you have a three-
level factor that’s significant by a one-way ANOVA, it’s not legitimate to compare each level
against each other with t tests, since the three repeated comparisons on the same data would
raise the Type I error rate higher than the alpha level that we set ahead of time. That’s why
folks like Tukey worked so hard to invent post hoc multiple-comparison tests that don’t raise
the Type I error rate too much.
 But what if these post-ANOVA level-versus-level comparisons were planned
comparisons? Then your decision to do any one analysis is unrelated to your decision to run
the others, so maybe we can treat the three analyses as independent. Or maybe not: Gelman
and Loken (2013) argue that it’s much harder to apply this logic in a valid way than researchers
tend to think. So like the binomial versus negative binomial analyses, you can see that the p
values are strongly dependent on the researcher’s intentions. Is this really an “objective” kind
of statistics?
 Yet another problem with traditional statistics concerns confidence intervals. You might
remember that I already explained this in the t test chapter: we cannot say that the population
mean has a 95% chance of being somewhere within a traditional 95% confidence interval, even
though that’s what we really wish we could say. This is because in traditional statistics, your
observed sample is treated as just one of many possible samples from the same population,
each with its own sample mean. This means that if we took the 95% confidence interval
calculated from our sample, and repeatedly put this fixed interval around the mean of every
same-sized sample from the population, then 95% of those repeated intervals would contain
the population mean. As pointed out by Lee (2004), a Bayesian statistics textbook, everybody
finds this very confusing, since the logic is exactly backwards from what we want to say.
 This confusion is an automatic side-effect of the frequentist approach. In order to
understand our data set, we’re supposed to imagine an infinity of other data sets generated by

Ch. 13: Bayesian modeling

6

the null hypothesis. This paradoxically makes the abstract population more “real” than the
observations we see with our own eyes!
 By contrast, in Bayesian statistics, it is the actual data set that is considered more “real”:
you start with your data set and then compute what it implies about your research hypothesis,
instead of starting with the null hypothesis and null population and computing what it implies
about your real data set, as in traditional statistics. So instead of the confusing confidence
intervals of traditional statistics, Bayesian statistics has something called the highest density
interval, explained later in this chapter, which does exactly what we wish the traditional
confidence interval did: it reflects the degree of confidence we learn from our data about the
hypothesized parameter (e.g., the mean).
 In general, then, Bayesian statistics is more intuitive than traditional statistics. In yet
another Bayesian textbook, Jaynes (2003, pp. 3ff) illustrates this with a story. Once night a cop
is walking down an empty city street and hears a burglar alarm ringing in a nearby jewelry
store. When he runs over he sees that the big glass storefront window has been smashed open,
and a man in a mask is crawling out with a bag of jewels. What should the cop do?
 Apply Bayesian reasoning, of course. The cop first considers the prior probability of a
theft in general. Store thefts don’t happen all the time to every store, so this prior probability
is relatively low. But this low prior probability is outweighed by the high likelihood that a theft
would generate all of the things that he observed: the alarm, the broken window, the guy with
a mask and a bag of jewels. This gives a relatively high posterior probability that a theft is
going on. Finally, he compares this with an alternative scenario where some innocent series of
events would generate the same observations. For example, Jaynes suggests that maybe the
man is the store owner himself, and he’s wearing a mask because he just returned from a
costume party, but he didn’t bring his store key so he was locked out, but just then a truck
drove by and accidently knocked a rock into the window, breaking the glass and setting off the
alarm, and so the store owner had no choice but to crawl in to save his jewelry. Obviously the
likelihood of this other scenario is much lower than the robbery hypothesis, which means that
its posterior probability is also much lower. Therefore, Bayesian logic gives the cop pretty
good justification to arrest the man.
 What could frequentist statisticians say in this situation? Maybe we could collect data on
thefts and non-thefts, and use logistic regression to predict this binary variable from variables
like the presence/absence of burglar alarms, broken windows, and men wearing masks crawling
out with bags of jewels. Even if such an analysis could be performed, it would certainly be
completely different from the immediate, intuitive, and completely convincing logic of the cop!
 Bayesians thus argue that scientific reasoning is actually Bayesian (e.g., Jaynes, 2003;
Howson & Urbach, 2006; Dienes, 2008), and there is some experimental evidence that even
ordinary people are natural Bayesian reasoners (e.g., Oaksford & Chater, 2009).

Ch. 13: Bayesian modeling

7

 If Bayesian statistics is so great, why isn’t everybody using it already? One reason is
historical (see Salsburg, 2001; McGrayne, 2011). As noted above, Mr. Bayes himself didn’t
push his basic insight very far. Its early development was mostly due to independent work by
the French mathematician Pierre-Simon Laplace (1749-1827). This guy was a real genius, and
his work lives on today in many areas of statistics, including the Laplace approximation that
glmer() uses to compute generalized mixed-effects models. But after playing around with
Bayesian logic for a while, Laplace discovered the Central Limit Theorem, which convinced
him that as long as you have enough data, Bayesian and frequentist analyses will always come
out the same. Since frequentist mathematics is easier to work with, that’s the way he went, and
so did most statisticians, starting with the likewise brilliant German mathematician Johann Carl
Friedrich Gauss (1777-1855), who is the reason why the normal distribution is also called the
Gaussian distribution.
 Moreover, when modern frequentist statistics matured in the early 1900s, the Bayesian
approach was attacked for being too subjective. One of the biggest critics was our friend Fisher;
his hatred of Bayes and his own obvious genius together caused Bayes almost to become taboo.
Ironically, during World War II and the Cold War, Bayesian methods were found to be very
good at inferring hidden things from observations, so they were used a lot in code-breaking,
finding enemy submarines, and things like that. But this also meant that Bayesian methods
became Top Secret and nobody else could use them!
 Another reason why Bayesian statistics was neglected has to do with the computations.
Although the basic math is trivial, applying it to realistic cases makes it much more complex.
In particular, we need to combine the prior, the likelihood and the evidence in a way that
generates the same type of probability distribution for the posterior, so that when the next set
of evidence comes in, our former posterior becomes the new prior for the next round. But this
turns out to be extremely hard to do. The area under probability distributions is calculated using
integrals (積分) in calculus (微積分學), but the integrals needed for realistic Bayesian
analyses often have no formulas: you can only estimate them. This wasn’t really practical until
the 1980s, when a computer algorithm called Gibbs sampling finally became routine, even
though it’s named after an American scientist, Josiah Willard Gibbs (1839-1903), who died
decades earlier (just as Fisher dreamed up mixed-effects modeling long before it was practical).
The computer implementation of Gibbs sampling ultimately led to influential programs like
BUGS (for “Bayesian inference Using Gibbs Sampling”; Lunn et al., 2009). As computers got
even faster and more powerful, other types of computational methods become possible as well,
leading to alternative programs like Stan (Stan Development Team, 2019), named in honor of
Polish-American mathematician Stanisław Marcin Ulam (1909-1984). He pioneered the
Monte Carlo method that is also used elsewhere in statistics (e.g., Monte Carlo methods are
used to estimate the p value for fisher.test(simulate.p.value = TRUE)); it’s named after the
famous gambling city because it’s essentially a random resampling method.

Ch. 13: Bayesian modeling

8

2.2 Bayes’s rule

 The basic idea of Bayesian statistics can be expressed in a probability formula known as
Bayes’s rule (貝氏定理、貝斯定理), also known as Bayes’s law or Bayes’s theorem (and as
with many s-final words in this dumb language of English, it’s also sometimes spelled Bayes’
rule: see https://en.wikipedia.org/wiki/Apostrophe).

2.2.1 The math of Bayes’s rule

 Formally, Bayes’s rule is concerned with that most confusing part of probability theory,
conditional probability (條件機率). Maybe you still remember its formal definition from the
probability chapter. The equation for conditional probability, shown below, says that the
probability of event A, given event B, is the probability of A & B happening together (called
their conjoint probability) given B, that is, relative to the probability of B in general. From
now on, we’ll write P(A & B) as P(A,B) to save a bit of space and to follow the more formal
mathematical style:

Conditional probability: P(A|B) = P(A,B)/P(B)

 Let’s test this equation with a case where A and B are independent. Say A = A (“ace”)
and B = ♠ (“spades”). Imagine you pull out a card randomly, and it’s a spade (the “given” part).
What’s the probability that it’s also an ace? Obviously it’s 1/13, since there are 13 spades.
That’s the left side of the above equation: P(A|♠). Now, what’s P(A,♠)? That’s the probability
that the card is an ace and a spade at the same time, i.e., A♠. Again obviously, that’s 1/52, since
there are 52 cards in the whole deck. Finally, what’s P(♠)? That’s the probability that the card
is a spade in general, and that is 1/4, since there are four “suits” (花色). Now we apply the
above equation, and yes, it works!

P(A|♠) = P(A,♠)/P(♠) = (1/52)/(1/4) = 4/52 = 1/13

 But conditional probability also works if A and B are not independent, as in the
contingency table in Table 1 (which we discussed in the chapter on chi-squared tests). We want
to know whether the vowel (/a/ vs. /i/) influences the place of the nasal consonant ([n] vs. [ŋ]).
As we saw, the frequentist chi-squared test shows that the vowels and nasals aren’t independent
(χ2(1) = 150.2, p < .0001).

https://en.wikipedia.org/wiki/Apostrophe

Ch. 13: Bayesian modeling

9

Table 1. The frequencies of various consonant phonemes and allophones

rime /aŋ/ /iŋ/ totals
[n] tokens 57 112 169
[ŋ] tokens 190 11 201
totals 247 123 370

 In terms of probability theory, what we’re looking at is conditional probabilities for the
nasal forms, with the vowels as given. If A = [n] and B = /a/, the conditional probability of [n]
given /a/ is like so:

P([n]|/a/) = P(/a/,[n])/P(/a/)

 P(/a/,[n]) is the count of that combination (57) divided by the grand total (370). P(/a/) is
the marginal at the bottom of the /a/ row in Table 1 (247), also divided by the grand total (370):

P([n]|/a/) = (57/370)/(247/370) = 57/247

 But there’s an easier way to calculate this: P([n]|/a/) just counts the frequency of [n] within
the /a/ column (just as P(A|♠) is just the proportion of aces in the set of spades):

P([n]|/a/) = P([n] in /a/ column) = 57/247

 There’s an apparently silly implication of the above discussion that will actually become
crucial later. Namely, since the conditional probability P(A|B) is related to the conjoint
probability P(A,B), we can also use algebra to derive the latter from the former:

Conditional probability: P(A|B) = P(A,B)/P(B)
Conjoint probability: P(A,B) = P(A|B)∙P(B)

 This lets us rewrite P(A) in terms of P(A|B) and P(B) for all possible Bs. This could be B
vs. ¬B (not-B), or B = ♠ vs. B = ♣ vs. B = ♥ vs. B = ♦. Then P(A) is the sum of all the conjoint
probabilities. For example, with B = black card (♠ or ♣) and ¬B = red (♥ or ♦). As shown below,
the proportions all come out correct:

P(A,black) = P(A|black)∙P(black) = (2/26)×(1/2) = 2/52
P(A,red) = P(A|red)∙P(red) = (2/26)×(1/2) = 2/52
P(A) = P(A,black) + P(A,red) = 2/52 + 2/52 = 4/52 = 1/13

 We can actually generalize this logic to any number of Bs with the sum operator Σ:

Ch. 13: Bayesian modeling

10

Probability as conjoint probability P(A) = ∑ P(A|Bi) ∙ P(Bi)i

 Now for Bayes’s rule, which flips conditional probability around: if you already know
P(A|B), you can use Bayes’s rule to compute P(B|A). Here’s the proof.
 We start by giving both conditional probabilities:

P(A|B) = P(A,B)/P(B) {the conditional probability we played with above}
P(B|A) = P(A,B)/P(A) {the flipped-around conditional probability}

 This gives us two ways to express the conjoint probability, so we can equate them:

P(A,B) = P(A|B)∙P(B) {from the first conditional probability}
P(A,B) = P(B|A)∙P(A) {from the second conditional probability}
P(A|B)∙P(B) = P(B|A)∙P(A) {equate the two sides}

Now we divide P(A) from both sides, and get the simplest version of Bayes’s rule:

Bayes’s rule (simplest version): P(B|A) = P(A|B)∙P(B)
P(A)

 This formula makes perfect sense in terms of the contingency table in Table 1. As we saw
earlier, P([n]|/a/) can be thought of as the probability of [n] in the /a/ column: 57/247. Similarly,
the flipped-around conditional probability P(/a/|[n]) can be thought of as the probability of /a/
in the [n] column: 57/169.
 Here’s the confirmation that this follows Bayes’s rule. We’ve already computed P([n]|/a/)
before, using P([n],/a/) and P(/a/), and now we also need P([n]), which is the marginal row total
for [n] (169) divided by the grand total (370):

P(/a/|[n]) = P([n]|/a/)∙P(/a/)/P([n]) = (57/247)(247/370)/(169/370) = 57/169

 Because the vowels and nasals aren’t independent, P([n]|/a/) and P(/a/|[n]) are different.
Phonologists would be more interested in P([n]|/a/) (since the vowels “cause” the nasal place
features), but if somehow they only had access to information about P(/a/|[n]), they could use
Bayes’s rule to flip around the conditional probabilities.

2.2.2 Basic applications of Bayes’s rule

 This discussion may make Bayes’s rule seem trivial and very dry. In particular, maybe
it’s not clear to you how Bayes’s rule relates to the notion of probability as subjective. Well,
you can think of science as collecting some data (D) and trying to figure out the hypothesis (θ)

Ch. 13: Bayesian modeling

11

that best explains it (Bayesian statisticians like to use the Greek letter theta for the unknown
parameter, maybe from “theory”?). In order to be testable, our scientific theory must make
some prediction about the likelihood that our hypothesis θ will generate our observed data D,
and that’s just a kind of conditional probability, namely the probability that we will observe D
given our hypothesis θ: P(D|θ). But what we really want to know is the other way around,
namely the conditional probability P(θ|D), which represents the probability that our hypothesis
θ is true, given our data D.
 Bayes’s rule to the rescue! If we plug in our values, we see that all we need to know to
find the posterior probability P(θ|D) is the likelihood P(D|θ), the evidence P(D) (that is, the
probability of making these observations in general), and the prior probability P(θ) (that is,
our belief in θ before we collect any evidence):

Bayes’s rule (simplest science-style version): P(𝜃𝜃|𝐷𝐷) = P(𝐷𝐷|𝜃𝜃)∙P(𝜃𝜃)
P(𝐷𝐷)

 Since linguistics is also supposed to be a science, this logic is quite useful in linguistics
too. For example, Hammond (2016) uses it to explain how learning constraints helped shaped
the peculiar structure of the Welsh gender system. Even more dramatically, Perfors et al. (2010,
2011) apply Bayes’s rule to the classic innateness question: how do children learn a grammar
G from language data L? In the formula below, the likelihood P(L|G) is the probability that the
language is generated by the grammar, P(L) is the probability of the language magically arising
by chance, and the posterior P(G|L) is the learnability of the grammar from language data. The
prior P(G) then represents the innate expectations that a child has about possible human
grammars (i.e., Universal Grammar).

A Bayesian analysis of innateness and language learning: P(G|L) = P(L|G)∙P(G)
P(L)

 As noted earlier, the most controversial part of Bayesian reasoning is the prior, since it’s
not always obvious where it comes from. For example, what is the prior probability for the
hypothesis that you tested in your most recent linguistic analysis? Maybe you personally had
strong confidence in it, but your colleagues may have been a bit more skeptical. How can we
possibly assign a specific number between 0 and 1 for that?
 Fortunately, if we have a huge amount of evidence, the influence of the prior probability
disappears (which is part of the reason that frequentist and Bayesian statistics can give very
similar results with larger samples). Still, until we collect enough evidence, the prior can affect
our conclusions, and thus how convincing they are to skeptics.

Ch. 13: Bayesian modeling

12

 One strategy is to choose an uninformative prior, weighing all competing hypotheses
equally. This strategy doesn’t work in many real cases, since even if we really know what all
the competing hypotheses are, it’s not realistic to say that all are equally likely. This is one
reason why Fisher was so skeptical: the prior is never truly “objective”.
 Bayesian statisticians respond to this criticism by suggesting that we should choose a prior
that relates to our existing beliefs, but be totally public about those beliefs. Ideally, you should
work with your worst enemy to choose a prior that you can both live with. Sometimes you may
agree to choose an uninformative prior, but other times you may choose an informative prior.
You can also try out different priors (yours vs. your enemy’s) to see how much difference this
makes. Often it doesn’t change the practical conclusions at all.
 To actually use Bayes’s rule in many realistic situations, however, we need to complicate
it a bit. One problem with the simplest version above is that it assumes that our hypothesis θ is
a single value, but this is never really true. For example, if our study involves binary outcomes,
our prior might involve the pair of null hypotheses that half of the observations will be “yes”
(P(θyes) = .5) and half will be “no” (P(θno) = .5). So the prior is actually a probability distribution,
not a single point estimate. Another problem is that the simple Bayes’s rule treats the evidence
P(D) as unrelated to the hypothesis, but actually, data only become evidence in relation to some
hypothesis.
 Most seriously, the simple formula doesn’t give you enough room to specify your own
prior in detail. For example, with binary data, the simple formula would look like this:

Simple version of Bayes’s rule for binary data: P�𝜃𝜃𝑦𝑦𝑦𝑦𝑦𝑦�𝐷𝐷� = P(𝐷𝐷|𝜃𝜃𝑦𝑦𝑦𝑦𝑦𝑦)∙P(𝜃𝜃𝑦𝑦𝑦𝑦𝑦𝑦)
P(𝐷𝐷)

 So there’s a place where you could enter your own prior for P(θyes), but there’s no place
to enter the prior value for P(θno). You might think this doesn’t matter, since the two values
must add up to 1 anyway, but there’s no place that this crucial information is mentioned in the
simple version. This makes it easy to get absurd results. For example, if P(D|θyes) = .6 and P(D)
= .5, setting P(θyes) = 1 will make P(θyes | D) = .6/.5 >1: but no probability can go over 1!
 We can solve all of these problems at the same time, by exploiting that apparently silly
mathematical trick we saw earlier, whereby P(D) can be written as the sum of P(D|θ) for all
possible θs. For binary data where θ relates the outcome “yes” versus “no”, P(D|θ) can be
written like so (note the use of the addition rule of probability theory, since responses can’t be
“yes” and “no” at the same time):

P(D) = P(D,θyes) + P(D,θno)
 = P(D|θyes)∙P(θyes) + P(D|θno)∙P(θno)

Ch. 13: Bayesian modeling

13

 Plugging this into the simplest version of Bayes’s rule gives us the following slightly more
complex version for analyzing binary data:

Bayes’s rule (for binary data): P�𝜃𝜃𝑦𝑦𝑦𝑦𝑦𝑦�D� = P(D|𝜃𝜃𝑦𝑦𝑦𝑦𝑦𝑦)∙P(𝜃𝜃𝑦𝑦𝑦𝑦𝑦𝑦)

P�D�𝜃𝜃𝑦𝑦𝑦𝑦𝑦𝑦�∙P�𝜃𝜃𝑦𝑦𝑦𝑦𝑦𝑦�+P�D�𝜃𝜃𝑛𝑛𝑛𝑛�∙P(𝜃𝜃𝑛𝑛𝑛𝑛)

 Note that Bayes’s rule now looks more clearly like a proportion: P(θyes|D) is the ratio of
the situation where the hypothesis is true, P(D|θyes)∙P(θyes), out of all possible P(D) =
P(D|θyes)∙P(θyes) + P(D|θno)∙P(θno) (formally that’s somethingyes / (somethingyes + somethingno)).
 For example, consider a common scientific and practical situation, where a doctor is trying
to diagnose an illness (θ) from observed symptoms (D); see Operskalski & Barbey (2016) for
more discussion of this kind of problem, and some visual aids that may help make it more
intuitive. Since this is a linguistics book, we’ll imagine that the illness relates to language.
 Suppose there’s a Martian child who still hasn’t begun to talk by the age of two. The
scariest possible cause of this observation is Bloopy Syndrome (θBloopy), which is guaranteed
to prevent the child from ever developing language: P(DNoTalk|θBloopy) = 1. It’s also known that
most Martian two-year-olds without Bloopy Syndrome can talk already: P(DNoTalk|θNoBloopy) = .1.
However, Bloopy Syndrome is very rare: P(θBloopy) = .0001, which means that P(θNoBloopy) = 1-
P(θBloopy) = .9999. What is the probability P(θBloopy|DNoTalk) that the child really has Bloopy
Syndrome?
 Let’s plug the numbers we have into Bayes’s rule. This is easy to compute in either R or
Excel (aside from making sure you don’t mix up the numbers):

P�𝜃𝜃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝐷𝐷𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁� = P(𝐷𝐷𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁|𝜃𝜃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)∙P(𝜃𝜃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)

P�𝐷𝐷𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁�𝜃𝜃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�∙P�𝜃𝜃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�+P�𝐷𝐷𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁D�𝜃𝜃𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�∙P�𝜃𝜃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁�

NoTalk.Bloopy = 1
NoTalk.NoBloopy = 0.1
Bloopy = 0.0001
NoBloopy = 0.9999
Bloopy.NoTalk = (1*Bloopy)/(NoTalk.Bloopy*Bloopy+NoTalk.NoBloopy*NoBloopy)
Bloopy.NoTalk

[1] 0.0009991008

 Thus despite the scariness of Bloopy Syndrome (it always prevents talking) and the rarity
of this symptom without Bloopy Syndrome, the low prior probability of this syndrome results
in a low posterior probability P(θBloopy|DNoTalk) too: only around .001. This is a higher
probability than our prior probability of P(θ) = .0001, since the lack of talking does provide
some evidence to support it, but our evidence isn’t dramatic enough, and could be explained

Ch. 13: Bayesian modeling

14

other ways as well. Thus we probably don’t have to worry about Bloopy Syndrome, unless we
get more evidence in support of this hypothesis, just as the cop did when he observed not just
the alarm, but also the broken window, the man with the mask, and the bag of jewels.
 Poldrack (2006) illustrates the Bayesian formula for binary data with an example from
neurolinguistics, where he counts the number of studies in the literature showing activation
versus non-activation in a certain brain region in language versus non-language studies:

 Language study Not language study
Activated 166 199
Not activated 703 2154

 Of course we could use ordinary frequentist statistics to run a two-way chi-squared test
on this contingency table, but this would not let us start from a default prior assumption. In his
case, he starts from the assumption that the probability of language being activated in an
unknown task is 50/50, so P(language) = P(not-language) = .5. Based on this, and the complex
Bayes’ rule, he derives the posterior probability of .69. Can you get the same result? (Kruschke,
2011, p. 74, assigns the same exercise, but for some reason it’s dropped in the revised edition
of Kruschke, 2015).

2.2.3 Naive Bayes classifiers

 The math of probability means that we can incorporate new information in a later cycle
of the analysis, when we treat the posterior probability as the prior probability as new evidence
comes in, or we can combine all of the information together in one step; we get exactly the
same results either way. If we also make the naive assumption that each piece of the
information is independent of all of the others, then we get something called a naive Bayes
classifier, which, as the name suggests, can be very useful for classifying things.
 Recent examples of this method, as applied to linguistics, can be seen in Lewis (1998)
and Jurafsky & Martin (2009). But the method is quite old: one of the first linguistic
applications of Bayesian logic was Mosteller & Wallace (1963) (see nontechnical summary in
Salsburg, 2001, pp. 130-135). These researchers wanted to determine the authorship of twelve
disputed papers from early American history: both Madison and Hamilton claimed to have
written them. Both authors wrote a lot, so the prior probabilities for both were essentially equal.
But it turns out that writers naturally differ in the use of function morphemes like upon, and in
other writings, Madison almost never used upon while Hamilton used it a lot: P(upon|Madison)
= Low and P(upon|Hamilton) = High. In the disputed papers, upon actually appears quite rarely,
so Bayes’s rule suggests that Madison was the more likely author.
 To get a concrete feel for how a naive Bayes classifier works, here’s a simplified version
of the Martian (but Chinese-like) classifier example from the logistic regression chapter. What

Ch. 13: Bayesian modeling

15

is the probability that the Martian word for an oblong animal should take the classifier tiao?
This question involves two observed properties (oblong, animal), so what we want to compute
is P(tiao|oblong,animal). Applying Bayes’s rule to this situation, we get this equation:

P(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|oblong, animal) = 𝐏𝐏�𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨,𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚�𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕�∙P(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
𝐏𝐏(𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨,𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚|𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕)∙P(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)+𝐏𝐏�𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨,𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚�¬𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕�∙P(¬𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

 Now we apply the conditional probability rule to unpack the likelihoods bolded above,
taking advantage of the independence assumption so we can use the following equalities:

P(animal|tiao,oblong) = P(animal|tiao)
P(oblong|tiao,animal) = P(oblong|tiao)
P(oblong,animal|tiao) = P(oblong|tiao)∙P(animal|tiao)
P(oblong,animal|¬tiao) = P(oblong|¬tiao)∙P(animal|¬tiao)

 This ends up giving us the following formula:

P(tiao|oblong,animal)= P(oblong|𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)∙P(animal|𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)∙P(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
P(oblong|𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)∙P(animal|𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)∙P(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)+P(oblong|¬𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)∙P(animal|¬𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)∙P(¬𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖)

 We can try this with a Martian data set obeying the independence assumption:

tiao = c(1,1,0,0); oblong = c(1,1,0,0); animal = c(1,0,1,0)
classifiers = data.frame(tiao,oblong,animal)
rownames(classifiers) = c("snake","rope","bird","apple")
classifiers
 tiao oblong animal
snake 1 1 1
rope 1 1 0
bird 0 0 1
apple 0 0 0

 We can compute the six probabilities we need to apply Bayes’s rule from the data:

Ptiao = sum(tiao)/length(tiao) # Counts each tiao, divides by the total
Pnottiao = sum(1-tiao)/length(tiao) # Counts each non-tiao, divides by the total
Poblong.tiao = sum(oblong*tiao)/sum(tiao) # oblong*tiao = 1 only if both are 1
Panimal.tiao = sum(animal*tiao)/sum(tiao)
Poblong.nottiao = sum(oblong*(1-tiao))/sum(1-tiao)
Panimal.nottiao = sum(animal*(1-tiao))/sum(1-tiao)

Ch. 13: Bayesian modeling

16

 If we plug all of these values into Bayes’s rule to compute P(tiao|oblong,animal), what
we are actually computing is the probability that a thing that is both oblong and an animal will
take the tiao classifier. Since in our data set, there is just one thing like this (snake) and it does
take tiao, the probability we get is one:

Poblong.tiao*Panimal.tiao*Ptiao /
 (Poblong.tiao*Panimal.tiao*Ptiao + Poblong.nottiao*Panimal.nottiao*Pnottiao)

[1] 1

 But we can also use this model to make predictions when we only have partial information.
For example, we may know that something is an animal, but we don’t know whether it’s oblong.
In this case, we might leave out this feature:

Panimal.tiao*Ptiao / (Panimal.tiao*Ptiao + Panimal.nottiao*Pnottiao)

[1] 0.5

 That is, an unknown animal has a 50% chance of taking tiao. That’s because in our pre-
classified data, we have exactly two animals, and one takes tiao (snake) and the other doesn’t
(bird).

2.2.4 Bayes’s rule for continuous data

 Yet another complexity that arises in applying Bayes’s rule for real-life problems is that
P(θ) often relates to continuous values. For example, we might believe θ = 23 to be the most
plausible value, but admit that even if θ were a little higher or lower it would still be mostly
plausible, though if it were much higher or lower its plausibility would drop dramatically. In
this case, a bell-shaped curve may be a good choice (though not necessarily a normal
distribution).
 Since we’re now dealing continuous values, though, we can’t split up all the possibilities
into discrete parts and add them up, as we did for θyes and θno. Instead, we have to imagine an
infinite number of infinitesimal probabilities that all get summed up using the magic of calculus,
specifically using integrals (積分). This turns the sum operator Σ for adding up discrete values
into the ∫ operator for integrals, where ∫ f(x) dx stands for the sum of all values of the f(x)
function across all continuous values of x:

Bayes’s rule for continuous-valued hypotheses: P(𝜃𝜃|𝐷𝐷) = P(𝐷𝐷|𝜃𝜃)∙P(𝜃𝜃)
∫P(𝐷𝐷|𝜃𝜃)∙P(𝜃𝜃)𝑑𝑑𝑑𝑑

Ch. 13: Bayesian modeling

17

 But even this rather scary-looking formula isn’t quite realistic enough. The hypothesized
parameter θ is not floating around by itself; it’s actually part of some larger model M. For
example, M might be a regression model, and θ is just a regression coefficient in this model.
So θ is conditional on M, and the prior is not simply P(θ) but P(θ|M), and the likelihood is not
P(D|θ) but P(D|θ,M):

P(𝜃𝜃|D, M) =
P(D|𝜃𝜃, M) ∙ P(𝜃𝜃|M)

∫d𝜃𝜃 P(D|𝜃𝜃, M) ∙ P(𝜃𝜃|M)

 This is the kind of equation that we’ll be using implicitly in the applications below, though
we’ll never need to actually compute this directly ourselves. But maybe now you can see why
Bayesian statistics is heavily dependent on computers.

2.3 Testing evidence for the null hypothesis

 Though we’ve just started looking at Bayesian statistics, you already know enough to
make one very useful application of it: the Bayes factor. This is used to compare two
competing models of the same data, to see which is more likely. If one of these models happens
to be the null hypothesis, the Bayes factor actually allows you to decide if the null hypothesis
is better than the alternative: we’re not restricted to merely not rejecting the null hypothesis,
as in traditional statistics.
 The concept of the Bayes factor is very simple. We want to know which of two competing
models has the higher posterior probability given our data, assuming that both have the same
prior probabilities. Bayes’s rule computes these posterior probabilities for us, so if we divide
one by the other, with the one we prefer on top, we will get 1 if the two models give the same
posterior probability, some big number of our preferred model is more probable, and some tiny
number if the other model is more probable. Since the data are the same in both cases, and
we’re assuming that the prior probabilities are the same, everything will cancel out in this
division except for the one thing that differs between the two models, namely their likelihoods.
Remember that the likelihood is the P(D|θ) part of Bayes’s rule, i.e., the likelihood that we’d
get our observed data D given the hypothesis θ.
 So suppose we want to compare the null hypothesis model M0 against the alternative
model M1, to see if the evidence supports M0 over M1 (again, this is impossible to do in
traditional statistics). The equation below shows Bayes’s rule for M0 divided by Bayes’s rule
for M1. The bolded part below is the ratio of the two likelihoods:

Dividing Bayes’s rule for two models: P(M0|D)
P(M1|D)

= 𝐏𝐏(𝐃𝐃|𝐌𝐌𝟎𝟎)
𝐏𝐏(𝐃𝐃|𝐌𝐌𝟏𝟏)

∙ P(M0)
P(M1)

Ch. 13: Bayesian modeling

18

 We’re comparing M0 and M1 because we can’t decide ahead of time which is better, so
we assume that the prior probabilities are the same for both, so P(M0)/P(M1) = 1. That is, we
assume that prior odds for the two competing models is 1:1. This assumption allows us to
compute the Bayes factor in favor of the null hypothesis:

Bayes factor in favor of the null hypothesis: B01 = P(D|𝜃𝜃,M0)
P(D|𝜃𝜃,M1)

 If you are a good statistics student, there should be something familiar about this. The
Bayes factor is a likelihood ratio, but haven’t we already been doing a lot of likelihood ratio
tests for traditional regression models? Exactly: the English mathematician Harold Jeffreys
(1891-1989), the inventor/discoverer of the Bayes factor, somehow managed to be friends with
Fisher, and thought that Fisher’s maximum likelihood method (later crucial for logistic
regression and mixed-effects modeling) was fundamentally a Bayesian method (see McGrayne,
2011, for the story).
 Let’s try a trivial example (adapted from Dienes, 2008) before we go on to more realistic
cases. Suppose you see a strange woman at an airport somewhere and wonder if she knows
English. If she does, it is quite likely that if you say “hello” to her, she will reply with “hello”.
Maybe she won’t (deaf, tired, rude), but let’s say the likelihood P(“hello”|English) = 9/10. By
contrast, if she knows no English, she might only reply “hello” if she likes repeating things,
which suggests a low likelihood, say P(“hello”|no-English) = 1/10. So you go up to her, say
“hello”, and she replies “hello” back. What can we conclude?
 Well, the Bayes factor in favor of her knowing English is quite large:

P(“hello”|English) / P(“hello”|no-English)

(9/10) / (1/10)

[1] 9

 Jeffreys (1961) suggested that a Bayes factor greater than 3 represents “some evidence”
for the hypothesis on the top (numerator) of the ratio, greater than 10 gives “strong evidence”,
and greater than 30 “very strong evidence”. So in this case, we have “some evidence” that the
woman knows English. A Bayes factor less than 1 tends to favors the hypothesis in the
denominator (bottom of the ratio), so you should flip the ratio around and calculate it again to
apply Jeffreys’s suggestion. The specific numbers aren’t crucial, except that for a large enough
sample, a Bayes factor of 3 against the null hypothesis roughly corresponds to p < .05 in
traditional null hypothesis testing (as implied by Johnson, 2005, p. 695, Figure 1).

Ch. 13: Bayesian modeling

19

 Calculating Bayes factors in more realistic cases is hard to do by hand, but quite easy with
R. The conceptually simplest method is to exploit the link with likelihood ratio tests, and take
another look at the Bayesian information criterion (BIC) that I briefly mentioned in the
previous chapter. This is the value that R reports for likelihood ratio tests along with the related
AIC (Akaike information criterion) that we’ve used more often.
 The BIC is calculated from the maximum likelihood that’s used to fit a model. The
equation looks like this, where, L = likelihood, k = parameters, N = sample size:

Bayesian information criterion: BIC = −2 ∙ ln(L) + k ∙ ln(N)

 If the sample is large enough, and the model is not too complex (basically, anything less
complex than a mixed ANOVA), we can easily use BIC to estimate a Bayes factor for the null
hypothesis model M0 against the alternative M1 (Raftery, 1995; Rouder et al., 2009). We do
this basically by inverting the above equation (we divide by -2, and then the exponential
function exp(x) = ex cancels the natural logarithm function ln):

Estimated Bayes factor in favor of the null hypothesis: B01 ≈ exp �BIC1−BIC0
2

�

 In R, this formula looks like this, where the BIC() function extracts the BIC values from
models M0 and M1, created using lm() or similar functions:

B01 = exp((BIC(M1) - BIC(M0))/2) # Just an abstract example for you to look at

2.3.1 Bayesian t tests

 Let’s try this out on some data, specifically the kind of data that would be analyzed with
a t test in frequentist statistics. Maybe you remember voweldurationsR.txt, which contains
(fake) vowel lengths from a single speaker for /i/ and /u/ in different words:

vd = read.delim("voweldurationsR.txt")
head(vd)

 Vowel Duration

1 i 283
2 i 325
3 i 426
4 i 340
5 i 352
6 i 278

Ch. 13: Bayesian modeling

20

 When we do an unpaired (homoscedastic) t test on this, it’s not significant: t(46) = 1.328,
p = .1907 (try it!):

t.test(Duration~Vowel, data=vd, var.equal=T)

 In traditional statistics, all we can say is that we are not justified in rejecting the null
hypothesis; p > .05 does not mean that we can be confident that the vowel durations are truly
equal.
 Now, remember that the unpaired homoscedastic t test is really a simple linear regression,
so the following gives exactly the same t, df, and p values (try it!):

summary(lm(Duration~Vowel, data=vd))

 Linear models like this have BIC values, so let’s get it with the BIC() function (all caps):

BIC1 = BIC(lm(Duration~Vowel, data=vd))

 Now we need the BIC for the null hypothesis that Vowel has no effect on Duration. So
we remove Vowel from the model to get the intercept-only model:

BIC0 = BIC(lm(Duration~1, data=vd))

 Now we estimate the Bayes factor favoring the null hypothesis over the alternative
hypothesis. The sample size is pretty small, so the estimate will be somewhat off:

B01 = exp((BIC1-BIC0)/2)
B01

[1] 2.808711

 The value B01 = 2.8 is right below Jeffreys’s arbitrary value of 3 for “some evidence”, but
assuming the true value is not much smaller than this, we are at least justified in saying that we
(almost) have some evidence in favor of the null hypothesis here. With traditional statistics,
we’re not even allowed to say that!
 Computing more accurate Bayes factors to test evidence for the null hypothesis requires
calculus and integrals, but fortunately R has packages that have all of this built in.
 To get a sense of how the math works, let’s look at the method described by Rouder et al.
(2009) for computing good estimates of the Bayes factor for one-sample t tests. The first part
of their method is to choose a plausible alternative hypothesis. If we choose an alternative with
an effect size too far from the observations, the Bayes factor will automatically favor the null

Ch. 13: Bayesian modeling

21

hypothesis, so we wouldn’t learn anything from new data. For example, if our likelihood says
that we should treat the durations of /i/ and /u/ as “the same” as long as the difference is less
than 1000 ms, that would be pretty useless.
 So they suggest that we should assume a bell-shaped prior distribution for the alternative
effect size, so that most of the area close to the null hypothesis. The prior implicitly assumed
by the above BIC estimate is such a distribution, since it’s based on the residuals for the
intercept-only model, which are assumed to conform to the standard normal distribution. But
we also don’t want the alternative prior to be too narrow, or else it looks like we’re cheating
the opposite way, by making the prior too informative (i.e., building in a bias for the alternative).
 Rouder et al. (2009) suggest a compromise: the prior should be the t(1) distribution (i.e.,
the t distribution for df = 1, also known as the Cauchy distribution). This is less informative
than the standard normal distribution, since it has “fat” tails. In case you’ve forgotten what fat
t tails look like, take a look at Figure 1, plotted with the following code:

curve(dnorm(x), -3,3, ylab = "Density") # Plot normal distribution (solid line)
curve(dt(x,1), -3, 3, add=T, lty=2) # Add Cauchy distribution (dashed line)
legend("topright",lty=c(1,2),legend=c("Normal","Cauchy")) # Explain stuff

Figure 1. The fat tails of the Cauchy distribution (t(1)).

 Assuming the Cauchy prior for the effect size, and priors for data variance suggested by
Jeffreys (1961) and for effect size variance suggested by Zellner & Siow (1980), which
together Rouder et al. (2009) call the JZS prior, they calculate the Bayes factor for the one-
sample t test by taking the sample size N and the t and df values from the traditional analysis
(e.g., t(46) = 1.328 for the vowel durations), where df is symbolized as v (to make it just one
letter long), and then put these three values into the hilariously complicated equation below (π
and e are the famous constants, and g is just used to define the integral). This formula can also
be scaled up or down a bit with a factor called r (which we’ll see shortly).

Ch. 13: Bayesian modeling

22

Please memorize for the exam: 𝐵𝐵01 =
�1+t

2

v �
−(v+t)/2

∫ (1+Ng)−
1
2�1+ t2

(1+Ng)v�
−(v+1)/2

(2π)−1/2g−3/2e−1/(2g)dg∞
0

 Fortunately, we don’t have to apply this formula by hand, since the authors built an R
package: BayesFactor (Morey & Rouder, 2014). This estimates integrals with iterative
algorithms like resampling. Let’s try it on the vowel durations!
 After you install BayesFactor and load it up, the first thing it does is point you to an
HTML manual, which unlike most R manuals, is actually written for ordinary human beings:

library(BayesFactor) # It says: "Type BFManual() to open the manual."
BFManual() # There it is!

 To compute the Bayes factor for an unpaired t test of the vowel durations, we do the
following. It doesn’t let us use the formula notation, so we have to extract the /i/ and /u/ values
first:

i.Dur = vd$Duration[vd$Vowel=="i"]
u.Dur = vd$Duration[vd$Vowel=="u"]

 Now we run the ttestBF() function of the BayesFactor package:

ttestBF(i.Dur,u.Dur)

Bayes factor analysis

[1] Alt., r=0.707 : 0.5871358 ±0.01%

Against denominator:
 Null, mu1-mu2 = 0

Bayes factor type: BFindepSample, JZS

 Checking ?ttestBF clarifies that the prior here is actually scaled to be a bit narrower than
the Cauchy distribution, by using that r factor; r = 0.707 reflects the default scaling factor for
two-sample tests (0.707 = sqrt(2)/2). The number following this is the Bayes factor in favor of
the alternative hypothesis (“Alt.”), so to get the Bayes factor in favor of the null hypothesis we
divide it into one: 1/0.5871358 = 1.703183. We can test the evidence in favor of the null
directly by using 1/ttestBF():

1/ttestBF(i.Dur,u.Dur)

Ch. 13: Bayesian modeling

23

Bayes factor analysis

[1] Null, mu1-mu2=0 : 1.703183 ±0.01%

Against denominator:
 Alternative, r = 0.707106781186548, mu =/= 0

Bayes factor type: BFindepSample, JZS

 This analysis is more accurate than the one we did with BIC, since our sample is so small.
Sadly, it seems that our sample may be too small for us to be very confident about the null
hypothesis here, since the Bayes factor for it (1.7) is now far below Jeffreys’s “some evidence”
value of 3.

2.3.2 Bayesian chi-squared tests

 The BayesFactor package can do far more than just one-sample or unpaired t tests.
Explore the manual for instructions on how to do this for much more complex cases, including
chi-squared tests, ANOVA, and multiple linear regression.
 To illustrate, let’s look at the Bayesian version of a chi-squared test. We’ll try this out on
something like our Mandarin sociolinguistic data from earlier, but now in a data set where a
traditional frequentist analysis gives us a null result. So in Table 2, it seems that there is no
clear correlation between the vowel and coda.

Table 2. The frequencies of various consonant phonemes and allophones

rime /aŋ/ /iŋ/
[n] tokens 190 112
[ŋ] tokens 57 27

 Here’s the data in R:

socdata = matrix(c(190,57, 112, 27), ncol = 2) # Entering by columns to match table
rownames(socdata) = c("n","N") # "N" for velar nasal
colnames(socdata) = c("a","i")
socdata

 a i
n 190 112
N 57 27

 If there is any effect, it must be that the vowel affects the coda, and not the other way
around, so the proportions we want to compare are these (or similarly for [ŋ]):

Ch. 13: Bayesian modeling

24

P([n]|a) = 190/(190+57) = .769
P([n]|i) = 112/(112+27) = .806

 Those values seem pretty close, and indeed, a frequentist two-way chi-squared test gives
us a null result:

chisq.test(socdata)

 Pearson’s Chi-squared test with Yates’ continuity correction

data: socdata
X-squared = 0.49891, df = 1, p-value = 0.48

 Can a Bayesian analysis help clarify what this result really means? The BayesFactor
package has a function called contingencyTableBF(), and it turns out to have some nice
features even beyond the null result issue.
 Here’s one way we can apply it to our data set. The argument sampleType =
"hypergeom" makes the null hypothesis the same as that assumed in the traditional chi-
squared test, namely that both the column and row marginals are fixed, and the values in the
cells are conditional on those fixed values (the fancy-sounding hypergeometric distribution
is just like the binomial distribution, except that the binomial one assumes values are randomly
taken with replacement, so earlier-chosen values don’t affect later-chosen ones, whereas the
hypergeometric distribution assumes values are random chosen without replacement, so that
earlier-chosen values, as are fixed in the rows and columns, do affect later choices).

socdata.bf = contingencyTableBF(socdata, sampleType = "hypergeom")

 As with ttestBF(), by default contingencyTableBF() gives you the Bayes factor for
comparing the alternative hypothesis against the null hypothesis, but we already know the
alternative hypothesis fails here, so let’s use the inverse for the Bayes factor in favor of the null
hypothesis (i.e., against the alternative hypothesis of non-independence of vowels and codas):

1/socdata.bf

Bayes factor analysis

[1] Indep. (a=1) : 6.231246 ±0%

Against denominator:
 Alternative, non-independence, a = 1

Bayes factor type: BFcontingencyTable, hypergeometric

Ch. 13: Bayesian modeling

25

 Well now, that Bayes factor of 6.23 is far above the minimum of 3 for “some evidence”
in favor of the null hypothesis, though it’s not up to the level of 10 for “strong evidence”.
 But is this really the null hypothesis we want to test? While the standard chi-squared test
assumes that we want to keep both row and column marginals fixed, in this case we actually
don’t, since in the real world, the vowels are determined first (in the mental lexicon), and the
codas are only determined later (in the phonetics). So it would actually make more sense only
to fix the columns (the vowels), as our conditional factor. Using contingencyTableBF(), we
can do just that:

socdata.bf2 = contingencyTableBF(socdata, sampleType = "indepMulti",

fixedMargin="cols")
1/socdata.bf2

Bayes factor analysis

[1] Indep. (a=1) : 6.576953 ±0%

Against denominator:
 Alternative, non-independence, a = 1

Bayes factor type: BFcontingencyTable, independent multinomial

 The Bayes factor in favor of the null hypothesis is about the same as before, but not exactly,
since the null hypothesis now allows the row values to vary freely. We can even run an analysis
where both row and columns can vary freely, and all that is fixed is the total number of data
points (386). This time the Bayes factor is noticeably lower than before (though still over 3),
since with so much freedom to randomly vary the cell values, it’s easier for our data set to be
consistent with the null hypothesis by chance alone.

socdata.bf3 = contingencyTableBF(socdata, sampleType = "jointMulti")
1/socdata.bf3

Bayes factor analysis

[1] Indep. (a=1) : 4.765134 ±0%

Against denominator:
 Alternative, non-independence, a = 1

Bayes factor type: BFcontingencyTable, joint multinomial

 So this Bayes factor stuff seems pretty useful. You can use it to analyze the same types of
data we’ve been analyzing with t tests, chi-squared tests, and so on, and even if we don’t get a
null result, a Bayes factor over 3 (or 10 or 30) in favor of the alternative hypothesis gives us at

Ch. 13: Bayesian modeling

26

least as much confidence that the pattern is “real” as traditional frequentist p value below .05
would give us, without the confusion over what the p value actually represents, and if we do
get a null result, we can check out the inverse of the Bayes factor to see if that goes over 3 (or
10 or 30), and if we want to run special kinds of two-way chi-squared tests that make different
assumptions about the marginals, we can do that too.
 Still, you should know that not all Bayesian statisticians like Bayes factors; in the 759
pages of Kruschke (2015), he only mentions Bayes factors briefly, and mainly just to dismiss
them. This is because Bayes factors suffer from one of the same logical flaw as p values.
Namely they assume that we can treat the prior probabilities for the two competing hypotheses
as if they are identical, but in real life, does anybody really believe that the null and alternative
hypotheses are equally plausible? Thus many Bayesian statistics say that you should use all of
Bayes’s rule, not just the likelihood parts (Lavine & Schervish, 1999).

3. A taste of Bayesian modeling

 Bayesian models more complex than the simple ones above can be run in R, but so far,
there is no “native” R package. That is, to run fancy models, all R can do is interface with non-
R special-purpose Bayesian programs, including the aforementioned OpenBUGS and Stan, as
well as other programs like JAGS (“Just Another Gibbs Sampler”; Johnson & Kuhn, 2013).
Like R, these Bayesian programs are also free (OpenBUGS only works in Windows, but the
others work on all platforms), and as mentioned, there are R packages designed to interface
with them (BRugs for OpenBUGS, rjags for JAGS, rstan for Stan). Still, you have to
download and install them separately from R, they use different syntax from R, and unlike the
dominant position of R among quantitative linguists (aside from a few SPSS holdouts), it’s not
clear which of these systems will the most useful to learn in the long run. For example, the first
edition of Kutsche (2011) focused on R and OpenBUGS, but in the new edition of Kutsche
(2015), the focus has shifted to JAGS and Stan (both with R interfaces). The last time I checked,
R mostly has partial Bayesian packages; in addition to the BayesFactor package we used above,
you can see more at http://cran.r-project.org/web/views/Bayesian.html).
 So in the remainder of this chapter I’ll give an overview of three other useful things we
can do with Bayesian statistics entirely within R: performing simple hypothesis testing on
binary data, computing the Bayesian version of confidence intervals, and incorporating random
and fixed variables (which we first saw in the paired t test, and in a much fancier form in mixed-
effects modeling).

http://cran.r-project.org/web/views/Bayesian.html

Ch. 13: Bayesian modeling

27

3.1 A Bayesian binomial test

 Let’s look at the simplest type of data that linguists might face: binary responses that are
independent and identically distributed (i.i.d., as statisticians abbreviate it), where we just
want to know the overall proportion of “yes” vs. “no”. In other words, we’re going to look at
a Bayesian version of the binomial test.
 In this kind of test, the hypothesized parameter θ is seen as the built-in probability of
getting “yes” vs. “no” (e.g., in people judging the acceptability of a sentence). Before we collect
any data, we might assume that θ is around 0.5 (equal chances of “yes” or “no”): this is our
prior. So in order to compute the posterior distribution, which reflects what we learn from the
data about θ, we need to learn about three things in applying Bayes’s rule: how to represent
this prior formally, how to represent the likelihood, and how to compute the posterior from the
prior and likelihood.
 The most fundamental step is to formalize the likelihood, since this encodes the
relationship between the data and the hypothesized parameter: P(D|θ). In our case, what we
need is called the Bernoulli likelihood function. The weird name comes from the fact that
random binary responses are called Bernoulli trials, after Swiss mathematician Jacob
Bernoulli (1655-1705), who was one of the founders of probability theory. For example, if you
run a simple syntax experiment where you ask a series of people if they accept or reject a
sentence, that’s a series of Bernoulli trials (“trial” as in an experiment).
 Since each response is i.i.d., the probability of getting any particular series of responses
is just the product of the probability of getting each response in the series. This situation is
subtly different from a binomial distribution, since we’re not assuming a fixed total N ahead of
time. As we saw earlier in this chapter, we can’t be sure that an experimenter using the
traditional binomial test has really fixed N ahead of time, but for this Bayesian analysis we
aren’t fixing N ahead of time, so this worry is gone.
 Formally speaking, the likelihood function is as follows, where the ys represent the N
binary data points in the data set D (z = number of “yes”) and the big pi Π means “product”
(積), which is an operator like the sigma Σ (for “sum”), except that it involves multiplying
instead of adding.

𝑃𝑃(𝑦𝑦1, … ,𝑦𝑦𝑁𝑁| 𝜃𝜃) = ∏ 𝑃𝑃(𝑦𝑦𝑖𝑖|𝜃𝜃)𝑖𝑖 = ∏ 𝜃𝜃𝑦𝑦𝑖𝑖𝑖𝑖 (1 − 𝜃𝜃)(1−𝑦𝑦𝑖𝑖) = 𝜃𝜃𝑧𝑧(1− 𝜃𝜃)(𝑁𝑁−𝑧𝑧)

 The formula only looks complex because it’s meant to be as general as possible, but it’s
not actually saying anything you don’t already know. For example, suppose D = {1,1,0} (e.g.,
our syntax experiment gives us the responses “yes”, “yes”, “no” for the test sentence), and
suppose θ = ½, which is a possible hypothesis about the overall probability of getting 1 (note
that I’m not calling it a “null hypothesis”, since Bayesian statistics doesn’t need that). In that
case:

Ch. 13: Bayesian modeling

28

P(D|θ) = P(1,1,0|½) = P(1|½)×P(1|½)×P(0|½) = [(½)1∙(½)0]×[(½)1∙(½)0]×[(½)0∙(½)1] = (½)3

 Now for the prior. Remember that this is not just a point estimate like θ = .5, but a whole
distribution. That’s why the above equation is so complex looking: it allows us to compute
probabilities for any possible θ between 0 and 1, and thus compute an entire distribution.
 In our case, a single point value doesn’t really make sense anyway. After all, we might
not be very confident that θ = .5, so we would want a wider distribution, where θ = .5 may be
the most believable, but θ = .7 wouldn’t be out of the question either. Or we may want to make
our prior completely uninformative, where θ has an equal chance to be any value from 0 (never
“yes”) to 1 (always “yes”). We might even believe that the prior is bimodal, with peaks for 0
and 1 and a valley in between. Our prior distribution should also relate to our situation in some
natural way, namely a series of Bernoulli trials, where each trial can only take two values. So
the distribution should only be defined between 0 and 1, and should be generated by values
relating to the numbers of “yes” and “no” responses.
 Finally, remember that we’ll need to combine the prior with our likelihood function to get
a posterior distribution, and if this process is hard to compute, we’ll be in trouble. In fact, the
prior and posterior should ideally come from the same distribution family, so we could run
through the cycle again with new data, using our old posterior as the new prior on each cycle.
This means that we need a family of distributions that is flexible enough to represent a narrow
bell shape (if we’re very confident in our prior θ = .5), or a uniform distribution (for a
completely uninformative prior), or anything in between. With fast computational algorithms,
we don’t really have to follow these constraints, but in this simple case, it is possible follow
them.
 The trick is to use yet another distribution family called the beta distribution, which was
first described informally by Bayes himself, developed further by Pearson, but used today
mainly by Bayesian statisticians precisely to deal with the above technical problems.
 No matter what its shape is, the beta distribution only varies θ from 0 to 1, since it relates
to the proportion of “yes” responses in a series of Bernoulli trials. It’s built using two
parameters with the unimaginative names of a and b, which have to be positive, since they
relate to the numbers of “yes” (a) and “no” responses (b). Kruschke (2015, p. 128) plots beta
distributions for various values of a and b, and we can do so too using the following R code.
This uses the function dbeta() (remember that “d” = density), in which the two parameters
shape1 and shape2 (just as unimaginative as a and b). The result is shown in Figure 2.

Ch. 13: Bayesian modeling

29

par(mfrow=c(5,5), # Prepares 5 x 5 mini-plots
 mai=c(0,0,0,0)) # Gets rid of the four margins around each mini-plot
for (b in c(0.5,1:4)) {
 for (a in c(0.5,1:4)) {
 curve(dbeta(x,a,b),0,1, # plots beta curve with a & b values from x=0 to 1
 xaxt="n",yaxt="n",ylim=c(0,3)) # hides axes and keeps plots same size
 text(0.5,2.5,labels=paste("a=",a,",b=",b,sep="")) # shows a & b for each plot
 }
}

Figure 2. Various beta distributions

 The shapes you get do make some sort of sense. As Kruschke (2015) points out, when
they are used to generate a prior distribution, a and b reflect how much prior evidence you have
(or believe in), with a reflecting “yes” (1) and b reflecting “no” (0), and the beta distribution
itself reflects your prior belief about the proportion a/(a+b).
 So if a and b are both 1, this is like only having two prior data points, with one “yes” and
one “no”: too little information to posit anything but an uninformative uniform prior (a
horizontal line). If a and b are both 4 (more data), we get a bell shaped distribution centered
around 0.5. If a is 4 but b is 2, this gives a skewed distribution, with the peak closer to 1 (the a
end) than to 0 (the b end). We can even get a bimodal distribution with a and b both set to 0.5
(indicating that each has a 50/50 chance, without much in between). The beta family is a very
flexible distribution family!
 The formula for the beta distribution is shown below. It looks scary, but unfortunately
we’ll need the details again shortly. The numerator (top) is just the Bernoulli function, applied
to the parameters a (for the number of “yes” responses) and b (for the number of “no”

Ch. 13: Bayesian modeling

30

responses). The denominator (bottom) is actually just a normalizing constant (the θ in the
integral just indicates that the total area goes from θ = 0 to θ = 1), cleverly designed so that the
area of the ratio adds up to 1, which has to be the case, since beta(θ|a,b) is a probability
distribution.

The beta function: 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝜃𝜃|𝑎𝑎, 𝑏𝑏) = 𝜃𝜃(𝑎𝑎−1)(1−𝜃𝜃)(𝑏𝑏−1)

𝐵𝐵(𝑎𝑎,𝑏𝑏)
= 𝜃𝜃(𝑎𝑎−1)(1−𝜃𝜃)(𝑏𝑏−1)

∫ 𝜃𝜃(𝑎𝑎−1)(1−𝜃𝜃)(𝑏𝑏−1)𝑑𝑑𝑑𝑑1
0

 Now we need a way to compute the posterior from the prior, after we’ve applied the
likelihood function to our actual data set. As Kutsche (2015, p. 132) shows, the flexibility of
the beta family and the simplicity of the Bernoulli function together imply that there is a fixed
formula for the posterior, which can be found just by plugging everything into Bayes’s rule.
Namely, given the prior parameters a and b, the total number of data points N, the total number
of “yes” (1) responses z, and the normalizing constant B, the posterior distribution is computed
as follows. Note the bolded prior at the left: P(θ). Using algebra, this gets unpacked as the
bolded portion of the ratio in the middle (see the B(a,b) denominator?).

𝑃𝑃(𝜃𝜃|𝑧𝑧,𝑁𝑁) =

𝑃𝑃(𝑧𝑧,𝑁𝑁|𝜃𝜃) ∙ 𝑷𝑷(𝜽𝜽)

𝑃𝑃(𝑧𝑧,𝑁𝑁) =
(𝜃𝜃𝑧𝑧(1 − 𝜃𝜃)𝑁𝑁−𝑧𝑧) ∙ �𝜽𝜽(𝒂𝒂−𝟏𝟏)(𝟏𝟏 − 𝜽𝜽)(𝒃𝒃−𝟏𝟏)�

𝑩𝑩(𝒂𝒂,𝒃𝒃) ∙ 𝑃𝑃(𝑧𝑧,𝑁𝑁) =
𝜃𝜃(𝑧𝑧+𝑎𝑎−1)(1 − 𝜃𝜃)(𝑁𝑁+𝑏𝑏−𝑧𝑧−1)

𝐵𝐵(𝑧𝑧 + 𝑎𝑎,𝑁𝑁 + 𝑏𝑏 − 𝑧𝑧)

= 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝜃𝜃|𝑧𝑧 + 𝑎𝑎,𝑁𝑁 − 𝑧𝑧 + 𝑏𝑏)

 Putting this more informally, in the ratios, the top (numerator) is the same as the Bernoulli
likelihood function, except with z+a instead of z, and N+b instead of N. Why? Because a is
our prior information about “yes” (we observe z “yes”es, but already had a prior “yes”es), and
b is our prior information about “no” (so we observe N total responses, but already had b prior
“no”s in there too). On the bottom (denominator) we divide by the normalizing constant B
defined for the current evidence to make sure the area of the distribution adds up to 1, as a
probability distribution must. And voilà: we get another beta distribution!
 This ugly-looking formula is actually quite simple to use, and it gives us the power to
describe the posterior distribution, given the prior and the evidence. After all, R has functions
for the beta distribution family, so all we have to do is plug in a and b for our prior and z and
N for our data.
 To see how this works, let’s return to the case we discussed earlier in this chapter. Namely,
a linguist asks 25 people to give binary good/bad judgments on a sentence, and only 8 of them
accept it. Does this imply that the sentence is unacceptable? Remember that in traditional
statistics, there are two different answers, depending on whether we fix the total N ahead of
time and compute the probability of getting the z “yes” responses by chance (significant by a

Ch. 13: Bayesian modeling

31

binomial test), or fix z and compute the probability of getting the total N (not significant by a
negative binomial test). The reason for the two answers is that there are two different things
that secretly might be going on the linguist’s head: this is the subjective part of supposedly
objective traditional statistics.
 In Bayesian statistics, however, the subjective part is explicit: the prior probability. So it’s
quite easy to try out the prior you prefer, and then try out the prior your worst enemy would
prefer, using exactly the same computations, in the hope of coming to some agreement about
the best way to analyze the data.
 Maybe you and your worst enemy agree that the best prior is the completely uninformative
uniform prior, namely that horizontal line expressed with a beta distribution with a and b both
1. Then, just as in the original story, we observe that N = 25 and z = 8. This gives us the
following posterior distribution:

P(θ|8,25) = beta(θ|8+1,25-8+1) = beta(θ|9,18)

 Or maybe you and your worst enemy agree on a prior where θ is very close to .5, so we
set both a and b to a high number like 100 to make the beta distribution peak sharply at that
point. This very informative or biased prior yields the following posterior distribution:

P(θ|8,25) = beta(θ|8+100,25-8+100) = beta(θ|108, 117)

 Using R’s beta distribution functions, we can now plot the analyses associated with each
of the two possible priors described above, resulting in Figure 3 (cf. Kutsche, 2011, p. 86):

likely.8.25 = function(theta) { theta^8 * (1-theta)^(25-8)} # P(8,25|theta)
par(mfrow=c(3,2), mai=rep(0.5,4)) # Two columns of three plots, small margins
curve(dbeta(x,1,1),0,1,main="Uniform prior") # (x = theta: curve requires "x")
curve(dbeta(x,100,100),0,1,main="Informative prior") # Sharp peak near theta = 0.5
curve(likely.8.25(x),0,1,main="Likelihood") # Likelihood based on observations
curve(likely.8.25(x),0,1,main="Likelihood") # Likelihood (same!)
curve(dbeta(x,8+1,25-8+1),0,1,main="Posterior") # Posterior for uniform model
curve(dbeta(x,8+100,25-8+100),0,1,main="Posterior") # Posterior for other model

Ch. 13: Bayesian modeling

32

Figure 3. Left: Uniform prior, likelihood, posterior; right: biased prior, likelihood, posterior

 This little exercise shows that if the prior is uninformative, as in the left side of Figure 3,
the shape of the posterior is identical to that of the likelihood: everything we know is what we
learned from the data. If it’s very informative, as in the right side of Figure 3, the influence of
our tiny data set is almost invisible, and the posterior remains almost identical to the prior: our
prior beliefs are too strong, and the evidence too weak, to change our minds.
 However, even if we have a very informative prior, if we collect enough data, the
influence of the prior will weaken. For example, say we continue running the experiment so
that N becomes ten times larger, and so does z. The ratio of z/N will remain the same as for the
small sample, but as shown in Figure 4, we’ll learn more about θ: the posterior will move a
little away from the prior and closer to the data.

likely.80.250 = function(theta) {theta^80*(1-theta)^(250-80)} # P(80,250|theta)
par(mfrow=c(3,1), mai=rep(0.5,4)) # One column of three plots, small margins
curve(dbeta(x,100,100),0,1,main="Informative prior") # Sharp peak at theta = 0.5
curve(likely.80.250(x),0,1,main="Likelihood") # Likelihood for larger data set
curve(dbeta(x,8+100,25-8+100),0,1,main="Posterior") # Shifted towards data

Ch. 13: Bayesian modeling

33

Figure 4. More data means a (slightly) greater shift from the prior to the posterior

 In a real research situation, you should either choose an uninformative prior (to avoid
fights with your critics), or choose an informative prior that you think your critics would also
find believable. Besides the uniform prior, another type of uninformative prior was that
recommended by Jeffreys (1961) (hence called the Jeffreys prior): set a and b to 0.5, to get a
bimodal distribution, as shown in Figure 5 for our original small data set:

likely.8.25 = function(theta) { theta^8 * (1-theta)^(25-8)} # P(8,25|theta)
par(mfrow=c(3,1), mai=rep(0.5,4)) # One column of three plots, small margins
curve(dbeta(x,0.5,0.5),0,1,main="Jeffreys prior") # Bimodal prior
curve(likely.8.25(x),0,1,main="Likelihood") # Likelihood for original small data set
curve(dbeta(x,8+0.5,25-8+0.5),0,1,main="Posterior") # Posterior for bimodal model

Ch. 13: Bayesian modeling

34

Figure 5. The effect of the Jeffreys prior

 Now that we’ve computed a posterior distribution based on our data (as constrained by
our prior distribution), what can we actually do with it? Well, the posterior tells us where the
most probable value for θ is, given the data (and our prior). For example, with the uniform
prior (a = b = 1) and N = 25 and z = 8, we can conclude that the most probable value for θ is
the mean of the posterior. We can compute this by playing around with distributions:

set.seed(1) # So you and I get the same results
mean(rbeta(10000,8+1,25-8+1)) # Estimated using resampling

[1] 0.3336166

 But our situation is so simple that there’s also a fixed equation to compute it (Krutsche,
2015, p. 133):

Posterior for Bernoulli trials: P(θ|D) = (z+a)/(N+a+b)

(8+1)/(25+1+1)

[1] 0.3333333

 Still, we don’t want to get stuck on point estimates again. The posterior is actually a
distribution, and its spread means something too. In particular, a wider posterior also means

Ch. 13: Bayesian modeling

35

less confidence in θ, and a narrower one means more confidence. This is the insight that gives
rise to the Bayesian version of confidence intervals, which we’ll discuss in the next section.
 The upshot of all this is that if you and your worst enemy can agree on a prior, there’s
only one “best” answer to our question about the 8 acceptances from the 25 speakers. Of course,
the prior is “subjective”, but unlike the “mind-reading” we have to do in the frequentist analysis,
the Bayesian priors are public, and anybody can calculate what happens if they try a different
one.
 Another nice consequence of the Bayesian approach is that unlike the case in traditional
statistics, it’s perfectly acceptable to stop our experiment part-way to see how it’s going, and
then decide to give up or continue based on the progress. Doing so doesn’t change the final N
or z, so the final result will be the same (assuming some particular prior). I mentioned this
property earlier when I introduced the naive Bayes classifier, which works equally well if you
input the features one at a time, or all at once.
 To illustrate this with our syntactic judgment experiment, say we collect the same N and
z responses, but in two separate phases (try it!):

data1 = c(rep(1,6),rep(0,10),1) # 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1: our first try
length(data1); sum(data1) # N = 17, z = 7
data2 = c(rep(0,7),1) # 0 0 0 0 0 0 0 1: we decide to get more data
length(data2); sum(data2) # N = 8, z = 1
length(c(data1,data2)); sum(c(data1,data2)) # total N = 25, total z = 8

 Then we analyze the first data set (data1) and get a posterior distribution. To incorporate
the second data set (data2) into the analysis, we simply turn this posterior distribution into our
new prior. The final result ends up being exactly the same as when we did it in one step, as you
can see if you compare last two bolded plots in Figure 5:

likely.7.17 = function(theta) {theta^7*(1-theta)^(17-7)} # data1 likelihood
likely.1.8 = function(theta) {theta^1*(1-theta)^(8-1)} # data2 likelihood
par(mfrow=c(2,4), mai=rep(0.5,4)) # Plots for data1 (top) & data2 (bottom)
curve(dbeta(x,1,1),0,1,main="data1: Uniform prior")
curve(likely.7.17(x),0,1,main="data1: Likelihood")
curve(dbeta(x,7+1,17-7+1),0,1,main="data1: Posterior")
frame() # Empty plot (so rows line up)
curve(dbeta(x,7+1,17-7+1),0,1,main="data2: Prior = data 1 posterior")
curve(likely.1.8(x),0,1,main="data2: Likelihood")
curve(dbeta(x,1+(7+1),8-1+(17-7+1)),0,1,lwd=2,main="data2: Posterior")
curve(dbeta(x,8+1,25-8+1),0,1,lwd=2,main="All: Posterior (= Figure 3, bottom left)")
1+(7+1) = 8+1 = 9, 8-1+(17-7+1) = 25-8+1 = 18

Ch. 13: Bayesian modeling

36

Figure 5. It doesn’t matter if you stop your experiment and continue it later

 This is dramatically different from what I’ve emphasized about using traditional statistics.
If you run part of an experiment, aren’t happy with the p values you’re getting, and then use
that information to collect more data until the p value goes below .05, then this doesn’t count
as truly statistically significant. This rule doesn’t seem like it gives a realistic picture of real
science, however. After all, if your worst enemy runs an experiment that finds no significant
result for your favorite hypothesis, then isn’t this going to inspire you to run a bigger
experiment to see if you can increase the power and get a significant result? More generally,
traditional statistics doesn’t capture the valid reasoning behind scientific data gathering: of
course scientists gather data to see if this changes their mind about hypotheses, and of course
they will gather some data, study (and maybe publish) it, and then go collect some more.
Despite its intimidating math, then, Bayesian statistics allows you to analyze your research
results in a way that fits much better with how you actually collect and interpret them.

3.2 Bayesian confidence intervals

 Remember how I mentioned in the t test chapter that the Bayesian statistician Lee (2004)
complained that traditional confidence intervals don’t mean what you think they mean? By
contrast, a 95% Bayesian confidence interval, also called a highest density region (HDI) or
credible interval, really does indicate that the hypothesized parameter (θ) has a 95%
probability of lying within it.
 The 95% HDI is based on the posterior distribution, but this won’t necessarily be
symmetrical (as it isn’t if we compute is using the beta distribution, as with our Bernoulli
experiments). We still want the two tails of the distribution to collectively contain exactly 5%
of the distribution area. Moreover, we want the “body” of the HDI to be as close as possible to

Ch. 13: Bayesian modeling

37

the hypothesized parameter θ, or else we might end up with a ridiculous situation where one
tail has 5% of the area, so that there’s no other tail at all.
 Because the posterior distribution can have any beta-style shape, and this distribution
family can have all sorts of shapes, we need to search for the HDI by using an iterative loop,
gradually shifting our guesses until it fits the above criteria (95% of the area, but not all stuck
on one end if we can help it).
 As an example, let’s compute the HDI for our Bernoulli experiment, where N = 25 and z
= 8, analyzed with the uniform prior (a = b = 1). We search iteratively for the two 5% points
closest to θ by slowly moving up the point for the left tail (making sure the right tail has the
rest of the 5% area), gradually shrinking the distance to the right point, until moving the left
point up any more will make the right point move away instead of moving closer. In the code
below, the looping is done using while(), which, unlike for(), keeps looping as long as the
expression inside the parentheses remains true, so we don’t have to specify the total number of
loops ahead of time (we don’t even know many we need).

betaHDI.try = function(N=25, z=8, a=1, b=1, confidence=0.95) {
 tail.L = 0 # Initialize left tail theta of the HDI
 old.width = 1 # Initial width for HDI at maximum (we want to find minimum)
 not.done = T # A logical variable to tell us that we haven't yet found the HDI
 while(not.done) { # Keep looping until we're done
 tail.L = tail.L + 0.000001 # Increase size of left tail point a tiny bit
 p.tail.L = pbeta(tail.L,z+a,N-z+b) # Area in left tail now
 p.tail.R = (1-confidence) - p.tail.L # Area in right tail now (both add up to 5%)
 tail.R = qbeta(p.tail.R,z+a,N-z+b,lower.tail=F) # Right tail point now
 new.width = tail.R - tail.L # Distance between two tails now
 if (old.width < new.width) { # Moving tail.L more makes width bigger
 not.done = F # We're done! We can jump out of the while-loop!
 } else { # Too bad, we're not done yet....
 old.width = new.width # Reset old width and try again
 } # End of if-else
 } # End of while-loop
 return(c(tail.L,tail.R)) # This is the HDI
} # End of betaHDI function

 Running the above function with the default arguments gives us the lower and upper
endpoints of the HDI (though it runs slowly and, as we’ll see, doesn’t give ideal results):

betaHDI.try()

[1] 0.164620 0.508787

 Of course this job can be done in a faster and more accurate way; Kruschke (2015, pp.
138-9) himself uses a function called BernBeta.R (Bernoulli beta), which uses another

Ch. 13: Bayesian modeling

38

function called HDIofICDF.R (inverse cumulative density function). The BernBeta.R
function makes use of R’s optimize() function, which does the same thing my while-loop does,
but faster and better. The BernBeta.R and HDIofICDF.R functions are available online at the
following links (for the first edition of Kruschke, 2011), for you to download and copy/paste
into R, or to load directly from the Web using the source() function (just copy each URL, put
it inside ““, inside source()):

https://jkkweb.sitehost.iu.edu/DoingBayesianDataAnalysis/Programs/HDIofICDF.R
https://jkkweb.sitehost.iu.edu/DoingBayesianDataAnalysis/Programs/BernBeta.R

 Here’s a simplified function that combines his two (without the plots and other fancy
things that his code does):

betaHDI = function(N=25, z=8, a=1, b=1, confidence=0.95) {
 p.tails = 1 -confidence
 find.width = function(p.L, conf) { # This is the function to optimize
 L = qbeta(p.L, z+a, N-z+b) # I'm using simpler argument names here...
 R = qbeta(p.L + conf, z+a, N-z+b) # ... to avoid confusion with main function
 return(R - L) # We want to minimize this by varying p.L
 }
 p.tail.L = optimize(find.width, # Name of function to optimize
 conf = confidence, # The other argument for the find.width function (fixed)
 interval = c(0,p.tails), # The range of p.L to search for the minimum R-L
 tol=1e-8 # A very strict "tolerance", for accuracy
)$minimum # one of the two outputs of optimize function
 tail.L = qbeta(p.tail.L, z+a, N-z+b)
 tail.R = qbeta(p.tail.L + confidence, z+a, N-z+b)
 return(c(tail.L, tail.R))
}
betaHDI()

[1] 0.1646193 0.5087863

 The results are quite close to what I got with my totally home-made function, but we get
them much faster.
 One thing we can do with the HDI is make decisions about hypotheses, similar to
traditional p-value logic (but better, since p values are kind of evil, as we’ve seen). For example,
if we want to know if getting 8 “yes” responses in 25 tries should count as “statistically different”
from equal probabilities for “yes” vs. “no” (θ = .5), we can look at the HDI we got: .165 to .509.
Given our uniform prior and our data set, we should be 95% confident that the actual θ is
between those values. And look, .5 is inside the HDI! Thus in this case, we can accept (not
merely not reject) the “null” hypothesis that θ = .5.

https://jkkweb.sitehost.iu.edu/DoingBayesianDataAnalysis/Programs/HDIofICDF.R
https://jkkweb.sitehost.iu.edu/DoingBayesianDataAnalysis/Programs/BernBeta.R

Ch. 13: Bayesian modeling

39

 More realistically, our “null hypothesis” won’t be just a single point value like θ = .5, but
will itself be a range, which Kutsche (2015) calls a region of practical equivalence (ROPE).
So if we say that any value for θ from .45 to .55 would count as “the same”, then again, in our
case, the ROPE overlaps with the HDI, so we are justified in accepting the null hypothesis as
consistent with the data (and prior).
 Of course, skeptics may criticize our uniform prior, and this will affect what they think of
our 95% HDI. If we instead use the highly informative, narrow bell-shaped prior from earlier
(a = b = 100), our 95% HDI becomes much narrower, even though it still contains θ = .5:

betaHDI(a=100, b=100) # 0.4149765 0.5451228: theta=0.5 firmly inside HDI

[1] 0.4149765 0.5451228

3.3 Bayesian hierarchical modeling

 Since this is the very last section of the very last chapter, we may as well go out with a
bang! So let’s combine this weird Bayesian stuff with the other high-tech thing you learned
recently, namely mixed-effects modeling (also known as multilevel modeling). In the Bayesian
world, mixed-effects modeling is usually called hierarchical modeling, for two reasons. First,
Bayesians don’t strictly distinguish “fixed” from “random”, since everything is a kind of
probability in Bayes’s rule. Second, even though hierarchical modeling seems like a crazy new
idea in frequentist statistics, it turns out to be quite fundamental in Bayesian statistics, where
lots of things are analyzed in terms of hierarchies. Indeed, the computational algorithms that
made Bayesian statistics practical are closely related to the algorithms that made frequentist
mixed-effects modeling possible.
 The key insight is that a Bayesian hierarchical model simply implies a certain kind of
conditional probability. Namely, just as the likelihood shows the data as conditional on the
hypothesized parameter, the parameter itself is conditional on higher-level parameters.
 For example, here’s the simple version of Bayes’s rule again, with D for data (e.g., the
observed z and N in our binary analysis):

Bayes’s rule (simplest version again): 𝑃𝑃(𝜃𝜃|𝐷𝐷) = 𝑃𝑃�𝐷𝐷�𝜃𝜃�∙𝑃𝑃(𝜃𝜃)
𝑃𝑃(𝐷𝐷)

 As Lynch (2007) points out, you can think of Bayes’s rule as already showing a kind of
simple hierarchy: the posterior P(θ|D) is really just the prior P(θ), weighted by the likelihood
and evidence P(D|θ)/P(D). The likelihood relates to the observed data, but to get the posterior
we multiply it by the prior, which is not directly observed, and so the prior represents a higher,
more abstract level.

Ch. 13: Bayesian modeling

40

 The prior P(θ) itself need not be the highest level of abstraction. For example, maybe
instead of asking for judgments about one sentence from a series of people, we instead ask each
person to give judgments about a fixed set of sentences. Then the observations are no longer
i.i.d., but instead come in grouping units. We’re still interested in the ultimate parameter θ for
the whole data set, but in between this highest level and our observations there is another layer
of θi parameters, one for each grouping unit (person). θ is now the hyperparameter of the
parameters θi, and P(θ) is the hyperprior for the priors P(θi|θ). This implies the following
extended version of Bayes’s rule:

Bayes’s rule (hyperparameter version): 𝑃𝑃(𝜃𝜃𝑖𝑖 ,𝜃𝜃|𝐷𝐷) = 𝑃𝑃�𝐷𝐷�𝜃𝜃𝑖𝑖 ,𝜃𝜃�∙𝑃𝑃(𝜃𝜃𝑖𝑖|𝜃𝜃)∙𝑃𝑃(𝜃𝜃)
𝑃𝑃(𝐷𝐷)

 If we want to avoid the “language-as-fixed-effects” fallacy, then we also have to add
another layer of parameters θj for the sentences:

Bayes’s rule (subjects × items version): 𝑃𝑃�𝜃𝜃𝑖𝑖 ,𝜃𝜃𝑗𝑗 ,𝜃𝜃�𝐷𝐷� =
𝑃𝑃�𝐷𝐷�𝜃𝜃𝑖𝑖 ,𝜃𝜃𝑗𝑗 ,𝜃𝜃�∙𝑃𝑃�𝜃𝜃𝑗𝑗|𝜃𝜃𝑖𝑖,𝜃𝜃�∙𝑃𝑃(𝜃𝜃𝑖𝑖|𝜃𝜃)∙𝑃𝑃(𝜃𝜃)

𝑃𝑃(𝐷𝐷)

 One clever use of the notion of hyperpriors is to build learning models that test hypotheses
about Universal Grammar (UG), as is done by Perfors et al. (2010). As explained earlier, L is
the language data received by the child and G is the language-specific grammar discovered by
the child, but now we also have the hyperprior P(U) for some specific hypothesis that linguists
may want to test about Universal Grammar:

UG as a Bayesian hyperprior: P(G, U|L) = P�L�G, U�∙P�G�U�∙P(U)
P(L)

 Unfortunately, it’s hard to make Bayesian hierarchical models concrete. The problem
comes from the definition of conditional probability: P(A|B) = P(A,B)/P(B). This means that a
conditional probability like P(θj|θi,θ) is equal to P(θj,θi,θ)/P(θi,θ), or a ratio of two joint
probabilities. These joint probabilities have two or three parameters, so they actually represent
two- or three-dimensional distributions, not just the one-dimensional kind that we’ve been
plotting all through this book (i.e., one dimension along the x-axis).
 One consequence is trivial: we can no longer make our familiar plots for the prior,
likelihood, or posterior. A more serious consequence is that joint probabilities don’t conform
to simple probability distribution families like the beta family. So we’re forced to use those
estimation procedures, like Gibbs sampling or Monte Carlo methods, mentioned earlier in the
chapter.
 Nevertheless, even using basic R, it’s possible to try out the idea. The following example
comes is based on one in Lynch (2007), and in addition to showing how hierarchical modeling

Ch. 13: Bayesian modeling

41

works in R, it also shows two other things: how a Bayesian analysis works for continuous
variables (not just the binary responses we’ve looked at so far in this book), and how Gibbs
sampling works.
 My linguistic version of Lynch’s data is in tests.txt, which give the test scores for twenty
Martian students in two different classes (actually heavily modified from a tiny bit of an
example involving two years’ salary; see Lynch, 2007, p. 241, fn. 1):

tdat = read.delim("tests.txt")
head(tdat[order(tdat$Student),]) # Reordered to show the grouping structure

 Student Class Score

1 1 1 56

21 1 2 70

2 2 1 54

22 2 2 83

3 3 1 61

23 3 2 88

 Our somewhat odd goal is to model the overall mean Score values, even though each
Student gives us two of them. So even though the data are paired, we’re not doing a paired t
test, but we’re just practicing how we can separate out the influence of Student on Score. In
other words, to express the goal in frequentist terms, rather than trying to predict Score from
any “fixed” variable, we’re actually modeling just the “random” effect. Anything more
complex than this would require going beyond basic R (which is what Lynch, 2007, does,
turning to WinBUGS, an older version of OpenBUGS).
 The actual mean and standard deviation for Score are easy to compute, of course:

mean(tdat$Score) # 79.175
sd(tdat$Score) # 13.26048

 Using the Central Limit Theorem, we can also compute a kind of idealized standard error
for the raw data:

sd(tdat$Score)/sqrt(40) # 2.096666

 It’s also easy to compute the mean Score values for each Student (here shown rounded):

subjmeans = tapply(tdat$Score,tdat$Student,mean) # Actual means
round(subjmeans,0)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
63 68 74 97 78 66 90 70 58 90 82 78 86 80 84 89 70 98 94 68

Ch. 13: Bayesian modeling

42

 Now we can compute the variance for these Student means:

var(subjmeans) # 140.7441

 Now for the modeling. To get you oriented with familiar stuff, let’s first run an intercept-
only model using traditional linear regression, ignoring the grouping by Student:

tdat.lm = lm(Score ~ 1, data = tdat)
summary(tdat.lm) # Just the coefficient table is shown below

Coefficients:

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 79.175 2.097 37.76 <2e-16 ***

Residual standard error: 13.26 on 39 degrees of freedom

 As you might remember, the estimate for the intercept is just the overall mean of Score,
and the standard error for the intercept is derived from the formula for one-sample t-tests (based
on the Central Limit Theorem):

mean(tdat$Score) # 79.175
sd(tdat$Score)/sqrt(nrow(tdat)) # 2.096666 (remember how to calculate this?)

 Now let’s do LME, again using an intercept-only model, but grouping by Student. Again,
the fixed intercept estimate is just the overall mean of Score, but the standard error is different
now, since we’re also taking the grouping by Student into account:

library(lme4)
tdat.lme = lmer(Score ~ 1 + (1|Student), data = tdat)
summary(tdat.lme) # Below only shows the tables for random and fixed effects

Random effects:

Groups Name Variance Std.Dev.
Student (Intercept) 103.01 10.149
Residual 75.47 8.688

Fixed effects:

 Estimate Std. Error t value
(Intercept) 79.175 2.653 29.85

 The LME results also show estimates for the random variance for Student and the
residuals. Notice that the LME residual standard deviation (8.688) is smaller than the residual
standard error for the ordinary linear model (13.26, implying a variance s2 of 175.8276),
because the LME takes the grouping into account; the random standard deviation for Student

Ch. 13: Bayesian modeling

43

(10.149) is bigger than the residual standard deviation, showing that most of the variation in
the data come from differences across students, not within students.
 The LME model also makes predictions about the mean scores for each student, which
we can compare with the actual means:

tdat.lme.pred = predict(tdat.lme)
tdat.lme.pred.student = (tdat.lme.pred[1:20]+ tdat.lme.pred[21:40])/2
subjmeans.lme = tdat.lme.pred.student
round(subjmeans.lme,0)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
67 71 76 92 79 69 87 72 63 87 81 78 84 80 83 86 72 93 90 71

 We can see how well (or poorly) this model captures Subject by making the scatter plot
in Figure 6. The dots fall on a straight line because LME models the random variables in a
linear way as well. The slope doesn’t match the data exactly because this slope is what the
LME algorithms was able to estimate from the data it was given.

plot(subjmeans, subjmeans.lme, xlim = c(50,100), ylim=c(50,100))
segments(x0=50,y0=50,x1=100,y1=100) # What a perfect fit would look like
abline(lm(subjmeans.lme ~ subjmeans), lty = 2) # Actual fit
legend("topleft",legend=c("Ideal fit","Actual fit"),lty =c(1,2))

Figure 6. How LME models the random effect

 Now let’s do it in a Bayesian way, and see how the results compare with LME. The
following R code is based on that given in Lynch (2007, pp. 245-6). I’ll first show the code
and the values that it outputs, and then explain how it works. Note that the code uses
randomization, so every time you run it, you get somewhat different results, which is why I set
a random seed, so you can follow along on your own computer (and lots of loops to let it
converge well).

Ch. 13: Bayesian modeling

44

set.seed(2) # So you get the same results that I do
Rearrange the scores into a matrix with two columns
y=as.matrix(cbind(tdat$Score[tdat$Class==1],tdat$Score[tdat$Class==2]))
"Safe" initial values for the priors (explained below):
m=0; s2=100000; a=c=.00001; b=d=.00001; tau2=1; sigma2=1; alpha=0
n=nrow(y) # Number of grouping units (Students)
Iterate through Gibbs sampling algorithm
for(B in 1:1000000) {
 alpha_i = rnorm(n, # Distribution for estimated by-Student means
 mean = (((tau2*(y[,1]+y[,2]))+sigma2*alpha)/(2*tau2+sigma2)),
 sd = sqrt((tau2*sigma2)/(2*tau2+sigma2)))
 alpha=rnorm(1, # Distribution for estimated overall mean
 mean=(tau2*m+s2*sum(alpha_i))/((tau2+n*s2)),
 sd=sqrt((tau2*s2)/(tau2+n*s2)))
 tau2=1/rgamma(1, # Distribution for estimated random Student variance
 shape=(n/2+a),
 rate=(sum((alpha_i-alpha)^2)+2*b)/2)
 sigma2=1/rgamma(1, # Distribution for estimated residual variance
 shape=n+c,
 rate=(sum((y-alpha_i)^2) +2*d)/2)
}

 The estimated overall mean and its standard deviation are given, respectively, by the
variable called alpha and a square root ratio computed using variables called tau2 and s2:

alpha # 77.79978
sqrt((tau2*s2)/(tau2+n*s2)) # 2.647624

 The Student and residual variance are represented by tau2 and sigma2, respectively:

tau2 # 140.2081
sigma2 # 74.23824

 In case you’re having trouble keeping track of all these numbers, Table 3 compares the
values (where available) for the raw data with the values (where available) estimated by the
linear modeling ignoring grouping by Student, the LME with Student as grouping variable, and
the hierarchical Bayesian model.
 It’s hard to say which model does the best. The two frequentist models capture the mean
exactly, since that mean is built into their calculations; given that the Bayesian model had to
figure it out using Gibbs sampling, it doesn’t seem too far off. All three models give roughly
similar values for the overall SE. LME and the Bayesian model give somewhat similar
estimates for the student variance; both differ from the observed values, but it’s not clear what
the best way to compute a raw value for this should be anyway. They both also have lower

Ch. 13: Bayesian modeling

45

variance for the residuals as compared with the simple linear model, showing that grouping by
Student did improve model fit.

Table 3. Real values and their estimates by various types of models

Overall
mean

Overall SE Student
variance

Residual
variance

Raw data 79.175 2.10 140.74 NA
Linear model 79.175 2.097 NA 175.83
LME 79.175 2.653 103.01 75.47
Bayesian 77.800 2.648 140.21 74.24

 But how well did the Bayesian model do at estimating the individual Student means?
These values are in the vector alpha_i:

subjmeans.bayes = alpha_i
names(subjmeans.bayes) = 1:20 # To compare with the real and LME-estimated means
round(subjmeans.bayes,0)

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

7
6

7
1

7
6

9
7

8
6

7
1

9
2

7
4

6
1

8
7

7
8

8
4

7
9

7
8

8
7

8
1

8
0

9
5

9
6

8
2

 Let’s see how these estimates compare with the real means, as shown in Figure 7:

plot(subjmeans, subjmeans.bayes, xlim = c(50,100), ylim=c(50,100))
segments(x0=50,y0=50,x1=100,y1=100) # What a perfect fit would look like
abline(lm(subjmeans.bayes ~ subjmeans), lty = 2) # Actual fit
legend("topleft",legend=c("Ideal fit","Actual fit"),lty =c(1,2))

Ch. 13: Bayesian modeling

46

Figure 7. How Bayesian statistics models the “random” effect (to use a frequentist term)

 The scatter of dots is clearly much broader than the neat line given by LME, but
interestingly, the Bayesian analysis seems to be picking up on a similar trend in the raw data,
tilting the Student means at a similar angle as the LME model, relative to the actual values.
 But how does this strange R code work? Well, if you must know, the spelled out Greek
letters (alpha, tau, and so on) represent parts of the following hierarchical model (using the
formal notation of Lynch, 2007, p. 242). Our goal is to learn about the overall mean α, cross-
Student variance τ2, individual Student means αi, and error variance σ2 from the data Y. Note
that the overall mean is represented with α, not our familiar population mean symbol μ, because
this represents the hypothesized parameter that we actually want to learn about, not the mean
of the boring old null hypothesis of traditional statistics. Also note how for each conditional
probability, each of the parameters on the right of the “|” is itself conditioned by something at
a higher level, until we reach the hyperparamers m, a, b, c, d for the hyperpriors, which aren’t
conditional on anything.

𝑃𝑃(𝛼𝛼, 𝜏𝜏2,𝛼𝛼𝑖𝑖 ,𝜎𝜎2|𝑌𝑌) =
𝑃𝑃(𝑌𝑌|𝛼𝛼𝑖𝑖,𝜎𝜎2) ∙ 𝑃𝑃(𝛼𝛼𝑖𝑖|𝛼𝛼, 𝜏𝜏2) ∙ 𝑃𝑃(𝛼𝛼|𝑚𝑚,𝜎𝜎2) ∙ 𝑃𝑃(𝜏𝜏2|𝑐𝑐,𝑑𝑑) ∙ 𝑃𝑃(𝜎𝜎2|𝑎𝑎, 𝑏𝑏)

𝑃𝑃(𝑌𝑌)

 To turn the above Bayes’s rule into the actual R code, Lynch (2007, pp. 242-245) has to
go through a long series of algebraic and even calculus-based derivations to simplify it enough
to actually run efficiently, but I’ll spare you the details.
 In computing the probabilities, we also assume that that the observed scores y for Student
i in class c are normally distributed with mean αi and variance σ2, Student means αi are normally
distributed with overall mean α and overall Student variance τ2, possible overall means α are

Ch. 13: Bayesian modeling

47

normally distributed with “hypermean” m and variance s2, possible overall Student variances
τ2 follow the inverse gamma distribution with parameters a and b, and possible error
variances σ2 follow the inverse gamma distribution with parameters c and d.
 What is the inverse gamma distribution? It’s yet another special distribution used more
commonly in Bayesian statistics than in traditional statistics, since it can model the unknown
variance of a normal distribution (as it does here): it’s always positive (like variance) and
positively skewed (favoring lower variances), and similar to the beta distribution, an inverse
gamma prior will often (though unfortunately not always) generate a posterior from the same
family, making the math easier to deal with.
 This may sound exotic, but it’s related to things we’ve seen before. Namely, the inverse
gamma distribution is the inverse of the gamma distribution (so if Γ is the gamma distribution,
1/Γ is the inverse gamma distribution). The gamma distribution is related to two familiar things:
the chi-squared distribution (also positive and rightward skewed) and the factorial (階乘)
function, generalized to continuous values. Naturally, R has a family of functions for it,
including rgamma(), used in the above code, which takes the parameters that R calls shape
and rate. So to select a random sample from the inverse gamma distribution in R, the code uses
1/rgamma().
 Turning back to the above R code, note the random sampling (rnorm() and 1/rgamma())
and the looping. These are two of the key features of Gibbs sampling, the algorithm that finally
made Bayesian statistics feasible in the 1980s. If you look carefully at the code, you’ll see that
each variable (alpha_i, alpha, tau2, sigma2) is defined in terms of all of the other variables,
plus a little bit of noise due to the random sampling. Due to the looping, this causes each
variable to be adjusted slightly each time the loop is repeated, gradually converging on the set
of values that you get at the end.
 Thus Gibbs sampling makes it possible to compute a posterior distribution for which there
is no simple formula (unlike the simple equations for the binary response data we played with
earlier). There are cases where even Gibbs sampling doesn’t work (e.g., where there is no
known distribution to use), but for that, there is a more flexible method called the
Metropolis(-Hastings) algorithm. Even though Metropolis sounds like it refers to a city, it’s
actually named after the American physicist Nicholas Constantine Metropolis (1915-1999) (his
family background was Greek). The Canadian statistician W. K. Hastings (1930-2016) got his
name added because he came up with a generalization in the 1970s.
 This randomization, however, means that we may get different results each time,
especially if we don’t loop enough. Moreover, as is usual with Bayesian statistics, we also have
to choose the priors carefully. At the start of the algorithm, the prior mean alpha and hyperprior
mean m are both set to zero (like the null hypothesis). The hyperprior variance s2 is set to a
huge number, making the hyperprior distribution essentially a uniform distribution. The error
variance sigma2 and Student variance tau2 are both set to 1 (which imply standard normal

Ch. 13: Bayesian modeling

48

distributions). The hyperprior parameters a, b, c, d for the inverse gamma distributions of tau2
and sigma2 are made so tiny that they initially have no influence. (I actually had to make these
priors even more extreme than Lynch had them, since my sample is much smaller than his.)
 But what was the point of all this Bayesian work, if the end result is a bunch of values that
essentially match what we can get with frequentist LME?
 One reason is the same as we’ve seen throughout this chapter: despite the complex math,
the ultimate product is more intuitive. For example, we can say that alpha represents our best
guess about the population mean, and we can compute a 95% HDI around it, instead of being
forced to say that we merely rejected the null hypothesis that the population mean is zero, and
using the backwards logic of traditional 95% confidence intervals. Another benefit is reliability:
if our sample is too small to allow the Central Limit Theorem to apply, Laplace’s reasoning
doesn’t work and the Bayesian analysis is actually a better model of the data, as indeed we saw
(compare Bayesan Figure 7 with LME Figure 6). Finally, because hierarchical modeling is
directly implied by Bayes’s rule, it seems that Bayesian modeling is capable of handling more
complex situations than frequentist tools like LME (see Gelman & Hill, 2007).
 Since this is the last section of the last chapter in the book, and I usually only get around
to revising this part of the book towards the end of the semester when all those urgent end-of-
the-semester things arrive to eat up my time, I am sadly unable to explain something really
important: all of the stuff discussed in this section has become quite a bit easier with a package
that talks to Stan in a more R-friendly way: brms (Bürkner, 2017), which stands for “Bayesian
Regression Models using ‘Stan’”. Vasishth et al. (2018) give a detailed tutorial for analyzing
phonetic data, which I hope to go through (along with other tutorials) so I can add my own
even briefer, and hopefully even easier (while still accurate) tutorial to this chapter. But based
on my current understanding, the main thing is that the package lets us stick with our old
familiar R formula syntax, instead of having to use Stan directly. For example, to run a
Bayesian mixed-effects regression, we might write something like this:

myBayes.brm = brm(RT ~ LogFreq + (LogFreq|Subjects), data = myData,
 prior = myPriors)

 The new bit is the prior argument, which is a vector that describes what we assume by
default about our model, for example:

myPriors = c(set_prior("normal(0, 200)", class = "Intercept"),
 set_prior("normal(0, 50)", class = "b", coef = "LogFreq"), ...)

 Inside the set_prior() function, the first argument describes what are priors are shaped
like. For example, the string "normal(0, 200)" describes a normal distribution with sd = 200,
though 0 isn’t the mean as we might expect, but rather the point where the distribution is

Ch. 13: Bayesian modeling

49

“truncated”, that is, the distribution starts at zero, since we expect the intercept for RT never to
go below zero. The second argument, class, links each prior to different parts of the model (e.g.,
the intercept as "Intercept" and the ordinary predictor variable coefficient as "b"). Finally,
the “...” represents all the other stuff that I don’t have time to explain, namely prior assumptions
about the variability in the model associated with the fixed and random variables (similar to
sigma2 in the model we did “manually” above).
 So... while brms certainly seems to make Bayesian modeling easier, it still takes a bit of
time to learn how to use it (as Vasishth et al., 2018, themselves admit). Stay tuned for future
editions of this chapter!

4. Conclusions

 Bayesian statistics has moved from an arcane mathematical game to a taboo in statistics
to an increasingly popular approach to statistics that, in its extreme form, wants to get rid of
most of traditional statistics, based on a frequency-based approach to probability, which is what
you’ve been studying in the rest of this book. The problems with traditional statistics have been
widely noted, even by traditional statisticians, including confusions over the meaning of p
values, counterintuitive concepts like confidence intervals, and the hidden influences of
subjectivity. Bayesian statistics aims to replace all this with a more intuitive notion of
probability in which one modifies ones prior confidence in a hypothesis (expressed as a
probability distribution) by taking into account the data, the likelihood that the data could result
from the hypothesis, and the overall probability of the observed data themselves, as expressed
in Bayes’s rule. In its simplest forms, Bayes’s rule allows us to use evidence to argue in favor
of the null hypothesis, a common situation in linguistics and to classify things. In more complex
forms, Bayes’s rule allows us to compute probabilities for binary response variables in a way
that makes our subjective assumptions explicit (as the priors), rather than hidden (as in the
confusing contrast between the binomial and negative binomial tests), to compute a more
intuitive form of a confidence interval and to accept or reject hypotheses, and even to compute
models as sophisticated as mixed-effects (hierarchical) models. Unfortunately, Bayesian
statistics has yet to receive a truly introductory treatment, aimed at total novices, but I hope
this chapter at least makes some of its key ideas and methods understandable and practical for
your own research... and hopefully future revisions will make this chapter even more useful!

References

Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal

of Statistical Software, 80(1), 1-28.
Carrier, R. C. (2012). Proving history: Bayes’s theorem and the quest for the historical Jesus.

Ch. 13: Bayesian modeling

50

Prometheus Books.
Cohen, J. (1994). The Earth is round (p < .05). American Psychologist, 49(12), 997-1003.
Dienes, Z. (2008). Understanding psychology as a science: An introduction to scientific and

statistical inference. Palgrave MacMillan.
Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical

models. Cambridge University Press.
Gelman, A., & Loken, E. (2013). The garden of forking paths: Why multiple comparisons can

be a problem, even when there is no “fishing expedition” or “p-hacking” and the research
hypothesis was posited ahead of time. Columbia University and Penn State University ms.
http://www.stat.columbia.edu/~gelman/research/unpublished/p_hacking.pdf

Gill, J. (2014). Bayesian methods: A social and behavioral sciences approach (third edition).
New York: CRC Press.

Hammond, M. (2016). Predicting the gender of Welsh nouns. Corpus Linguistics and
Linguistic Theory, 12(2), 221-261.

Howson, C., & Urbach, P. (2006). Scientific reasoning: The Bayesian approach (third edition).
Chicago: Open Court.

Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge University Press.
Jeffreys, H. (1961). Theory of probability (third edition). Oxford: Oxford University Press,

Clarendon Press.
Johnson, T. R., & Kuhn, K. M. (2013). Bayesian Thurstonian models for ranking data using

JAGS. Behavior Research Methods, 45 (3), 857-872.
Johnson, V. E. (2005). Bayes factors based on test statistics. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 67(5), 689-701.
Jurafsky, D., & Martin, J. H. (2009). Speech and language processing (second edition). Upper

Saddle River, NJ: Pearson.
Kruschke, J. K. (2011). Doing Bayesian data analysis: A tutorial with R and BUGS. Academic

Press.
Kruschke, J. K. (2015). Doing Bayesian data analysis, Second edition: A Tutorial with R, JAGS,

and Stan. Academic Press.
Lavine, M., & Schervish, M. (1999). Bayes factors: What they are and what they are not. The

American Statistician, 53(2), 119-122.
Lee, P. M. (2004). Bayesian statistics: An introduction (third edition). Arnold.
Lewis, D. D. (1998). Naive (Bayes) at forty: The independence assumption in information

retrieval. In Machine learning: ECML-98 (pp. 4-15). Springer Berlin Heidelberg.
Lunn, D., Spiegelhalter, D., Thomas, A., & Best, N. (2009). The BUGS project: Evolution,

critique and future directions. Statistics in Medicine, 28 (25), 3049-3067.
Lynch, S. M. (2007). Introduction to applied Bayesian statistics and estimation for social

scientists. Springer.

Ch. 13: Bayesian modeling

51

McGrayne, S. B. (2011). The theory that would not die: How Bayes' rule cracked the Enigma
code, hunted down Russian submarines, & emerged triumphant from two centuries of
controversy. Yale University Press.

Morey, R. D., & Rouder, J. N. (2014). BayesFactor: Computation of Bayes factors for common
designs. R package version 0.9.7.

Mosteller, F., & Wallace, D. L. (1963). Inference in an authorship problem. Journal of the
American Statistical Association, 58 (302), 275-309.

Oaksford, M., & Chater, N. (2009). Précis of Bayesian rationality: The probabilistic approach
to human reasoning. Behavioral and Brain Sciences, 32, 69-120.

Operskalski, J. T., & Barbey, A. K. (2016). Risk literacy in medical decision-making. Science,
352(6284), 413-414.

Perfors, A., & Tenenbaum, J. B. (2010). Variability, negative evidence, and the acquisition of
verb argument constructions. Journal of Child Language, 37, 607-642.

Perfors, A., Tenenbaum, J. B., & Regier, T. (2011). The learnability of abstract syntactic
principles. Cognition, 118, 306-338.

Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends
in Cognitive Sciences, 10(2), 59-63.

Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology,
25, 111-163.

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests
for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2),
225-237.

Salsburg, D. (2001). The lady tasting tea: How statistics revolutionized science in the twentieth
century. New York: W. H. Freeman & Company.

Stan Development Team. (2019). Stan User’s Guide, Version 2.29. https://mc-stan.org/.
Vasishth, S., Nicenboim, B., Beckman, M. E., Li, F., & Kong, E. J. (2018). Bayesian data

analysis in the phonetic sciences: A tutorial introduction. Journal of Phonetics, 71, 147-
161.

Zellner, A., & Siow, A. (1980). Posterior odds ratios for selected regression hypotheses. In J.
M. Bernardo, M. H. DeGroot, D. V. Lindley, & A. F. M. Smith (Eds.), Bayesian statistics:
Proceedings of the First International Meeting (pp. 585-603). Valencia: University of
Valencia Press.

