Modeling universal and lexical influences on phonotactic judgments

James Myers and Jane Tsay **National Chung Cheng University**

Lngmyers at ccu.edu.tw

http://www.ccunix.ccu.edu.tw/~Ingmyers/

TPC-4 - Taipei, Taiwan - May 4, 2013

Overview

- Universality enhances lexical learning
 - Cooperative interaction
- Evidence from acceptability judgments
 - English
 - Southern Min
 - Mandarin (two separate tests)
- Implications for phonological theory
 - Optimality Theory makes the wrong predictions...
 - ... but there may be an OT-like solution

How do universals shape grammar?

- Universal Grammar (UG)
 - Experience arranges universal bits of grammar
 - E.g. learning OT ranking (Tesar & Smolensky 2000)
- Learning biases
 - Experience is filtered through universal biases
 - E.g. locality in constraint building (Hayes & Wilson 2008)
- UG and biases make distinct predictions
 - Strict vs. fuzzy universals (e.g. Mielke 2008)
 - How universals and experience interact

Clues from acceptability judgments

- Native speaker judgments of nonwords reveal productive phonological knowledge
- Lexical typicality improves acceptability
 - English-like items sound better to English listeners
 - Likewise for many languages, including Chinese (e.g. Bailey & Hahn 2001; Myers & Tsay 2005)
- Naturalness also improves acceptability
 - Universally less marked items sound better (e.g. Frisch & Zawaydeh 2001; Hayes & White 2013)

Operational definitions

- Lexical typicality: Learned from experience
 - Highly analytical (e.g. constraint weights)
 - Sort of analytical (e.g. phonotactic probability)
 - Holistic (e.g. neighborhood density)
- Naturalness: Universally helps learning
 - Typology (by hunch, or quantitative)
 - · Cross-linguistically common = easier to learn
 - Complexity (e.g. in terms of features)
 - Simpler = easier to learn

5

Reducing statistical confounds

• Naturalness & lexical typicality are correlated:

• A statistical trick: Replace one independent variable with residuals:

confound with typicality

Three logically possible interactions

- No interaction
 - Judgments improve with lexical typicality equally strongly in natural and unnatural items
- Competitive interaction
 - Judgments show stronger lexical typicality effects in unnatural items
- Cooperative interaction
 - Judgments show stronger lexical typicality effects in natural items

No interaction

Competitive interaction

Cooperative interaction

Test 1: English

- Reanalyzing the constraint-violating nonword judgment data from Hayes & White (2013)
- Lexical typicality: Weights of computerlearned constraints (higher = less typical)
- Naturalness: Typological intuitions (albeit by

experts)		Naturalness of constraints		
		Unnatural	Natural	
Constraint	Lower	oid (vs. oit)	trefk (vs. treft)	
weights	Higher	ooker (vs. ocker)	jouy (vs. jout)	
·			11	

Result: Cooperation

Test 2: Southern Min

- 255 non-lexical syllables, one per each logically possible bigram of Southern Min phonemes
- 20 native speakers, binary auditory judgments
- Lexical typicality: Lexical bigram probability (observed / expected: Frisch & Zawaydeh 2001)
- Naturalness: Bigram feature differences (more differences = easier to distinguish perceptually; tone was ignored...) Mean number of feature changes

one was ignorea		,		
			Lower	Higher
	Mean bigram	Lower	biem ¹	sot ⁴
	probability (O/E ratio)	Higher	guoŋ ⁷	piok ⁸

13

16

Result: Cooperation

Two tests in Mandarin

- A mega-study (see e.g. Balota et al. 2012)
 - All 3,274 non-lexical syllables that can be written in BPMF (Taiwan's phonetic orthography)
 - Binary judgments of BMPF syllables
- Test 3: Pilot (16 speakers)
 - Neighborhood density x onset typological frequency
- Test 4: Full mega-study (76 speakers)
 - Phonotactic probability within vs. across languages
- Both analyses ignore tone again

15

Test 3: Neighbors & Onset typology

- Lexical typicality: Number of lexical neighbors One segment from target (Vitevitch & Luce 1999)
- Naturalness: Number of languages that have the item's initial consonant (in UPSID;

Maddieson 1984)		UPSID freque	ency of onset
		Lower	Higher
Neighborhood	Lower	t ^h io ²	pio ⁴
density	Higher	t ^h iei¹	piei ¹

Result: Cooperation

Test 4: Lexical & typological phonotactics

- Lexical typicality: Joint transition probability of bigrams in Mandarin (Albright 2009):
 - $(freq(s_1s_2)/freq(s_1)) \times (freq(s_2s_3)/freq(s_2)) \times ...$
- Naturalness: Same thing, but computed over languages in ASJP database (Brown et al. 2013)

see Appendix 1	or	ASJP transition probability		
etails on ASJP)		Lower	Higher	
Mandarin	Lower	siau ⁴	sin³	
transition probability	Higher	liai ¹	fau ²	

Result: Cooperation?

Is the cooperative interaction real?

- Empirically robust?
 - Other quantifications of naturalness and lexical typicality, other languages, interfering factors...
 - · Whence the wiggliness ...?
- Statistically meaningful?
 - Interaction may be due to a "floor effect":
 - Are the flatter trend lines merely due to overall low acceptability?
 - But Test 4 shows simple interactions aren't inevitable

20

Can OT get this pattern?

- Consider three markedness constraints A, B, C
- Encode items via violation profiles

[ABC] = a form obeying all three constraints
[aBC] = a form violating A but obeying B & C, etc...

- Sort items by degree of markedness:
 - More natural items: [aBC], [AbC], [ABc]
 - Less natural items: [abC], [aBc], [Abc]
- Does OT more readily distinguish among the natural items, as the judgment data imply?

24

OT: No interaction, or competition

• All violation profiles equally distinguishable:

More natural items					
	Α	В	С		
aBC	*				
AbC		*			
ABc			*		

Less natural items						
	Α	В	С			
abC	*	*				
аВс	*		*			
Abc		*	*			

•	Unnatural items more
	informative about
	constraint demotion:

	С	Α	В
ℱabC		*	*
aBc	*	*	
Abc	*		*

Interactions and addition

 OT comes from Harmonic Grammar (HG), which computes harmony via addition (Hayes & Wilson 2008; Potts et al. 2010):

H = Weight₁ x Violations₁ + Weight₂ x Violations₂ + ...

- HG makes the same false predictions as OT
 If H([aBC]) > H([AbC]), then H([aBc]) > H([Abc])
- In essence this is because interactions go beyond addition (as in statistics)

$$Y = X_1 + X_2 + X_1 X_2$$

23

26

Modeling interactions in OT

- The X_1X_2 part in $Y = X_1 + X_2 + X_1X_2$ looks familiar...
- Try constraint conjunction (Smolensky 1993)
 A&B violated if and only if both A and B are violated
- But this makes unnatural items more distinct:

More natural items

Less natural items

	A&B	Α	В	С
aBC		*		
AbC			*	
ABc				*

	A&B	Α	В	С
abC	*	*	*	
aBc		*		*
Abc			*	*

24

Positive constraint conjunction

- Try again (Crowhurst & Hewitt 1997; cf. Wolf 2007)
 AB is obeyed if and only if both A and B are obeyed
 (The Smolensky type is actually disjunction)
- This works! Natural items are more distinct:

More natural items

Less natural items

	AB	Α	В	С
aBC	*	*		
AbC	*		*	
ABc				*

	AB	Α	В	С
abC	*	*		
аВс	*		*	
Abc	*			*

25

(See Appendices 2 & 3 for more discussion...)

Sketch of a learning model

- Learner encodes items via innate constraints
 /san/ = {✓ONSET, ✓*NUC/i, *NOCODA,...}
 - This is the key learning bias
- Learner creates positively conjoined constraints [aBC] triggers creation of BC [abC] triggers nothing
- And ranks them by how often they're obeyed freq([aBC]) > freq([AbC]) triggers BC >> AC
 - The above steps capture cooperative interaction
- Non-conjoined constraints do nothing...?
 BC >> AC works (almost) exactly like B >> A

Conclusions

- Naturalness and lexical typicality cooperate
 - Many empirical questions remain open
 - (The ASJP database is an amazing typology tool)
- Standard OT misses this insight
 - Positive conjoined constraints may help
 - Many formal questions remain open
- Learning biases are better than UG
 - UG: Learning fills innate gaps (no interaction, or competition)
 - Biases: Naturalness helps learning (cooperation)

Thanks!

- · Experimental participants
- Assistants Guo-Ming Hong, Chiung-Wen Hsu, Zi-Ping Hsu, Yu-Leng Lin, Chia-Wen Lo, Chen-Tsung Yang
- National Science Council (Taiwan) grants NSC 97-2410-H-194-067-MY3, NSC98-2410-H-194-086-MY3, NSC101-2410-H-194-115-MY3
- Commentators Tsung-Ying Chen, Bruce Hayes, Elizabeth Hume, Yu-Leng Lin, and the audiences of SLE 45 (Stockholm, 2012) and the Workshop on Phonological Markedness (Hsinchu, Taiwan, 2012)

28

Appendix 1: The ASJP database

- The Automated Similarity Judgment Program was created to study diachronic phonology
 - Around 40 Swadesch (1971) words per language
 - Currently contains 5844 languages! Includes creoles, Esperanto, Klingon, no sign language...
 - Transcriptions can be simplified and noisy: Mandarin "blood" [sye3]: Sie, Swe, Siueh
- But it's also great for phonological typology
 - Family and genus information can be used for representative samples (we haven't tried this yet)

Appendix 2: Gradient interactions

The more unnatural, the more constraints needed to distinguish...

		AB	AC	AD	ВС	BD	CD	Α	В	С	D]
More natural	aBCD	*	*	*				*				1
	AbCD	*			*	*			*			1
	ABcD		*		*		*			*		1
	ABCd			*		*	*				*	1
Semi- natural	abCD	*	*	*	*	*		*	*			1
	aBcD	*	*	*	*		*	*		*		1
	aBCd	*	*	*		*	*	*			*	1
	AbcD	*	*		*	*	*		*	*		1
	AbCd	*		*	*	*	*		*		*	1
	ABcd		*	*	*	*	*			*	*	1
Less natural	abcD	*	*	*	*	*	*	*	*	*		1
	abCd	*	*	*	*	*	*	*	*		*	1
	aBcd	*	*	*	*	*	*	*		*	*	1
	Abcd	*	*	*	*	*	*		*	*	*	3

Appendix 3: Think positive

Standard OT

- Representations encoded via violations only (Golston 1996)
- Learner learns only what is not already innate
- **UG approach:** What's innate is a partial grammar

OT with positive constraint conjunction

- Representations also encode obeyed constraints
- Innately sanctioned representations filter learning
- Bias approach: What's innate is a learning algorithm

back

References (1/4)

Albright, A. (2009). Feature-based generalisation as a source of gradient acceptability. Phonology, 26 (1), 9-41.

Bailey, T. M., & Hahn, U. (2001). Determinants of wordlikeness: Phonotactics or lexical neighborhoods? Journal of Memory & Language, 44, 569-591.

Balota, D. A., Yap, M. J., Hutchison, K.A., & Cortese, M. J. (2012). Megastudies: What do millions (or so) of trials tell us about lexical processing? In J. S. Adelman (Ed). Visual word recognition, Vol. 1. Psychology Press.

Brown, C. H., Holman, E. W., & Wichmann, S. (2013). Sound correspondences in the world's languages. Language, 89 (1), 4-29. ASJP website:

http://email.eva.mpg.de/~wichmann/ASJPHomePage.htm

References (2/4)

Crowhurst, M., & Hewitt, M. (1997). Boolean operations and constraint interactions in Optimality Theory. UNC at Chapel Hill & Brandeis ms. [ROA-229]

Frisch, S. A., & Zawaydeh, B. A. (2001). The psychological reality of OCP-Place in Arabic. Language, 77 (1), 91-106.

Golston, C. (1996). Direct Optimality Theory: Representation as pure markedness. Language, 72 (4), 713-748.

Hayes, B., & White, J. (2013). Phonological naturalness and phonotactic learning. Linguistic Inquiry, 44 (1), 45-75.

Hayes, B., & Wilson, C. (2008). A Maximum Entropy model of phonotactics and phonotactic learning. Linguistic Inquiry, 39 (3), 379-440.

References (3/4)

Maddieson, I. (1984). Patterns of sounds. Cambridge University Press.

Mielke, J. (2008). The emergence of distinctive features. Oxford University Press.

Myers, J., & Tsay, J. (2005). The processing of phonological acceptability judgments. Proceedings of Symposium on 90-92 NSC Projects (pp. 26-45). Taipei, Taiwan, May.

Potts, C., Pater, J., Jesney, K., Bhatta, R., & Becker, M. (2010). Harmonic Grammar with linear programming: From linear systems to linguistic typology. Phonology, 27 (1), 77-117.

Smolensky, Paul (1993). Harmony, markedness, and phonological activity. Talk presented at Rutgers Optimality Workshop I, New Brunswick, NJ. [ROA-87] 34

References (4/4)

Swadesh, M. (1971). The origin and diversification of language. Edited by Joel Sherzer. Chicago: Aldine.

Tesar, B., & Smolensky, P. (2000). Learnability in Optimality Theory. MIT Press.

Vitevitch, M. S., & Luce, P. A. (1999), Probabilistic phonotactics and neighborhood activation in spoken word recognition. Journal of Memory and Language, 40, 374-408.

Wolf, M. (2007). What constraint connectives should be permitted in OT? In M. Becker (Ed.), University of Massachusetts occasional papers in linguistics 36: Papers in theoretical and computational phonology (pp. 151-179). Amherst, MA: GLSA.

35